Evaluating LLMs on large contexts : a RAG approach on text comprehension
Lu, Benoît
Promoteur(s) : Ittoo, Ashwin
Date de soutenance : 5-sep-2024/6-sep-2024 • URL permanente : http://hdl.handle.net/2268.2/21150
Détails
Titre : | Evaluating LLMs on large contexts : a RAG approach on text comprehension |
Auteur : | Lu, Benoît |
Date de soutenance : | 5-sep-2024/6-sep-2024 |
Promoteur(s) : | Ittoo, Ashwin |
Membre(s) du jury : | Poumay, Judicaël
Geurts, Pierre |
Langue : | Anglais |
Nombre de pages : | 57 |
Mots-clés : | [en] Large Language Model [en] Retrieval Augmented Generation [en] Natural Language Processing [en] Context Window [en] Text Comprehension |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques |
Public cible : | Professionnels du domaine Etudiants |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master en science des données, à finalité spécialisée |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] While the latest Large Language Models (LLMs) continue to expand in size and context window capacity, their knowledge base remains constrained by their training corpus. Retrieval Augmented Generation (RAG) offers a solution to this limitation by enhancing the LLM’s responses with relevant information retrieved from external sources. In contrast to the rapidly growing context windows, which now extend to millions of tokens, this study evaluates the effectiveness of augmenting prompts as an alternative approach to using large contexts, this is done by evaluating multiple-choice questions originally made for long context settings. By using parts of the context with RAG, I demonstrate that a well-constructed RAG system
can achieve strong performance with significantly reduced token usage. However, the results also reveal challenges related to prompt sensitivity. Despite these challenges, the potential reduction in inference costs due to lower token usage makes this approach particularly appealing, depending on the application
context.
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.