Feedback

Faculté des Sciences
Faculté des Sciences
MASTER THESIS
VIEW 32 | DOWNLOAD 14

Gravitational wave signal detection from core-collapse supernovae with the algorithm ALBUS

Download
Weidemann, Nell ULiège
Promotor(s) : Fays, Maxime ULiège
Date of defense : 5-Sep-2024/6-Sep-2024 • Permalink : http://hdl.handle.net/2268.2/21212
Details
Title : Gravitational wave signal detection from core-collapse supernovae with the algorithm ALBUS
Translated title : [fr] Détection de signaux d'ondes gravitationnelles provenant de supernovae à effondrement de coeur avec l'algorithme ALBUS
Author : Weidemann, Nell ULiège
Date of defense  : 5-Sep-2024/6-Sep-2024
Advisor(s) : Fays, Maxime ULiège
Committee's member(s) : Cudell, Jean-René ULiège
Dupret, Marc-Antoine ULiège
Sluse, Dominique ULiège
Language : English
Keywords : [en] Core-collapse supernovae
[en] Gravitational wave
[en] Deep Learning
[en] Convolutional neural network
Discipline(s) : Physical, chemical, mathematical & earth Sciences > Space science, astronomy & astrophysics
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences spatiales, à finalité approfondie
Faculty: Master thesis of the Faculté des Sciences

Abstract

[en] Gravitational waves are oscillations of spacetime itself. They are produced by the most powerful and extreme events in the Universe. Predicted by the theory of general relativity, these waves were first detected in September 2015. The merger of two massive black holes generated a spacetime deformation that was detected by the LIGO interferometers.

Other sources, such as core-collapse supernovae, are also believed to produce gravitational waves. The collapse of a massive star's core could generate signals that last less than a second, with waveforms that are not accurately known. As a result, traditional detection techniques, which rely on a good understanding of the targeted source's waveform, are ineffective. Deep learning techniques have been proposed as an alternative for detecting GW-generated power excess in time-frequency representations.

In this research project, we develop adaptations of the algorithm \textit{ALBUS} for the detection of gravitational wave signals from core-collapse supernovae. ALBUS, which stands for Anomaly detection for Long-duration BUrst Searches, was originally designed for the detection of minute-long transient gravitational waves. It generates a time-frequency map highlighting pixels identified as potential GW signals. This work demonstrates that short-duration signal detection is possible by training a neural network algorithm, thereby opening up new possibilities for developing GW detection pipelines that leverage the speed and accuracy of neural networks.


File(s)

Document(s)

File
Access Master_Thesis_WeidemannNell.pdf
Description:
Size: 11.93 MB
Format: Adobe PDF

Author

  • Weidemann, Nell ULiège Université de Liège > Master sc. spatiales, fin approf.

Promotor(s)

Committee's member(s)

  • Cudell, Jean-René ULiège Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
    ORBi View his publications on ORBi
  • Dupret, Marc-Antoine ULiège Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
    ORBi View his publications on ORBi
  • Sluse, Dominique ULiège Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Multi-wavelength Extragalactic & Galactic Astroph. (MEGA)
    ORBi View his publications on ORBi
  • Total number of views 32
  • Total number of downloads 14










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.