Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
MASTER THESIS
VIEW 11 | DOWNLOAD 0

Mémoire-projet

Download
Chevalier, Benoît ULiège
Promotor(s) : Neysen, Nicolas ULiège
Date of defense : 21-Aug-2024/7-Sep-2024 • Permalink : http://hdl.handle.net/2268.2/21424
Details
Title : Mémoire-projet
Translated title : [fr] Comment une entreprise hautement technologique commercialisant un logiciel doté d’intelligence artificielle peut-elle maximiser son nombre de prospects dans le secteur industriel en B2B au moyen de la vente directe ?
Author : Chevalier, Benoît ULiège
Date of defense  : 21-Aug-2024/7-Sep-2024
Advisor(s) : Neysen, Nicolas ULiège
Committee's member(s) : Ferrara, Charlotte ULiège
Mack, Philippe 
Language : French
Number of pages : 146
Keywords : [fr] hautement technologique
[fr] vente directe
[fr] prospects
[fr] secteur industriel
[fr] IA
[fr] Intelligence artificielle
Discipline(s) : Business & economic sciences > Marketing
Name of the research project : Comment une entreprise hautement technologique commercialisant un logiciel doté d’intelligence artificielle peut-elle maximiser son nombre de prospects dans le secteur industriel en B2B au moyen de la vente directe ?
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sales management, à finalité spécialisée
Faculty: Master thesis of the HEC-Ecole de gestion de l'Université de Liège

Abstract

[en] Introduction :
In an era of rapidly accelerating technological advancements, technology companies, particularly those selling AI software, face unique challenges. These companies must stay at the forefront of technology to meet customer expectations and not be outpaced by growing competition, while also optimising their commercial strategies to maximise operational efficiency. This thesis addresses the question: How can a high-tech company maximise its number of prospects in the industrial B2B sector through direct sales?
Objectives :
 Maximise the number of prospects for a technology company selling AI software to industrial B2B clients through direct sales.
 Identify the most effective direct prospecting methods for generating leads in the industrial sector.
 Determine the essential tools to be provided to salespeople to optimise lead generation.
 Explore how AI tools can help salespeople focus on high-value tasks.

Methods :
The thesis begins with an introduction to PEPITe and its environment, followed by a literature review defining key concepts such as sales prospects, the industry, and AI. The review also explores the sales cycle. A qualitative study is conducted with two target groups: sales force members and clients, to gather insights from industry professionals and customers. Analytical tools like matrices and their horizontal analysis are used to draw conclusions from the study and propose practical recommendations.
Results : The study offers several key recommendations to optimise the sales process:
1. Adopt a multichannel approach : combine face-to-face meetings, telephone calls, and LinkedIn to engage prospects.
2. Use AI for prospecting : use AI to identify, qualify, and personalise interactions with prospects.
3. Pre-qualify suspects according to criteria: focus on market segment, company size, revenue, location, and public/private status.
4. Optimise direct sales methods : employ a customer-centric and progressive approach, using SPIN Selling and dedicated follow-ups.
5. Use KPIs to measure effectiveness : track conversion rate, sales cycle duration, appointment numbers, and feedback mechanisms.
6. Train and structure the sales team : provide ongoing training, optimise technology use, and structure the team by industry segment.

Conclusion : The study highlights key elements for maximising the number of prospects in a high-tech company through direct sales. Implementing these strategies will enable companies like PEPITe to enhance their prospecting efforts, organise their sales processes efficiently, and ultimately boost their market presence and sales performance.


File(s)

Document(s)

File
Access S226978Chevalier2024.pdf
Description:
Size: 1.3 MB
Format: Adobe PDF

Author

  • Chevalier, Benoît ULiège Université de Liège > Mast. sales. man. à fin. spéc. (en alternance)

Promotor(s)

Committee's member(s)

  • Ferrara, Charlotte ULiège Université de Liège - ULiège > HEC Liège : UER > UER Management : Sustainable Strategy
    ORBi View his publications on ORBi
  • Mack, Philippe PEPITe
  • Total number of views 11
  • Total number of downloads 0










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.