Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
Mémoire

Predicting Extreme Price Movements in Technology Stocks: A Study of High-Frequency Trading Dynamic

Télécharger
Flas, Martin ULiège
Promoteur(s) : Hambuckers, Julien ULiège
Date de soutenance : 15-jan-2025/24-jan-2025 • URL permanente : http://hdl.handle.net/2268.2/22417
Détails
Titre : Predicting Extreme Price Movements in Technology Stocks: A Study of High-Frequency Trading Dynamic
Auteur : Flas, Martin ULiège
Date de soutenance  : 15-jan-2025/24-jan-2025
Promoteur(s) : Hambuckers, Julien ULiège
Membre(s) du jury : Hübner, Philippe ULiège
Langue : Anglais
Nombre de pages : 88
Mots-clés : [fr] High-Frequency Trading
[fr] Extreme Price Movements
[fr] Machine Learning
[fr] Financial Markets
[fr] Risk Management
Discipline(s) : Sciences économiques & de gestion > Finance
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur de gestion, à finalité spécialisée en Financial Engineering
Faculté : Mémoires de la HEC-Ecole de gestion de l'Université de Liège

Résumé

[en] This thesis addresses the critical need to predict and mitigate risks associated with extreme price movements (EPMs) under normal market conditions, leveraging machine learning models and high-frequency data.
The study focuses on technology stocks, specifically those of Facebook, Nvidia, Google, Microsoft, and Apple, over a six-month period in 2018. Using data from LOBSTER, a tool for reconstructing limit order books, novel liquidity covariates were developed to enhance prediction granularity. The research employs a comprehensive methodological framework, comparing logistic regression, decision trees, random forests, and advanced neural networks, including Long Short-Term Memory (LSTM) models, to identify and forecast EPMs.
Key findings reveal that logistic regression offers interpretability, while random forests and LSTM models provide superior predictive performance. The study also addresses challenges like class imbalance and model transparency, crucial for practical financial applications. By identifying predictive patterns in EPMs, this thesis contributes to improving market resilience and informing regulatory frameworks.
The results underscore the importance of integrating advanced modeling techniques with high-frequency data for early detection of EPMs, offering actionable insights for market practitioners and regulators. Future research directions include expanding datasets and exploring hybrid models to further enhance predictive accuracy and robustness.


Fichier(s)

Document(s)

File
Access master_thesis_Flas_Martin.pdf
Description:
Taille: 2.46 MB
Format: Adobe PDF

Auteur

  • Flas, Martin ULiège Université de Liège > Master ing. gest., fin. spéc. fin. engineering

Promoteur(s)

Membre(s) du jury









Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.