Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Master's thesis and internship : Development and Improvement of the power system module within the European Integrated Assessment Model MEDEAS

Télécharger
Diffels, Noé ULiège
Promoteur(s) : Quoilin, Sylvain ULiège
Date de soutenance : 24-jan-2025 • URL permanente : http://hdl.handle.net/2268.2/22453
Détails
Titre : Master's thesis and internship : Development and Improvement of the power system module within the European Integrated Assessment Model MEDEAS
Auteur : Diffels, Noé ULiège
Date de soutenance  : 24-jan-2025
Promoteur(s) : Quoilin, Sylvain ULiège
Membre(s) du jury : Wehenkel, Louis ULiège
Solé, Jordi 
Cornélusse, Bertrand ULiège
Langue : Anglais
Nombre de pages : 94
Mots-clés : [en] Integrated Assessment Model
[en] Machine Learning
[en] MEDEAS
[en] Surrogate Model
[en] Energy Transition
Discipline(s) : Ingénierie, informatique & technologie > Energie
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Grand public
Autre
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil en génie de l'énergie à finalité spécialisée en Energy Networks
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] This master's thesis is situated within the broader framework of global climate change and the European Green Deal, which sets the ambitious goal of achieving net-zero greenhouse gas (GHG) emissions in Europe by 2050. In particular, this research focuses on the Integrated Assessment Model (IAM) MEDEAS. This model aims to address the challenges of the energy transition within the European Union (EU) by providing comprehensive assessments of the potential impacts and mitigation strategies associated with various policy measures.

The master's thesis aims to propose a new version of MEDEAS which incorporates a machine learning-based surrogate model (SM) to improve the predictive potential of the IAM, particularly in simulating the European electrical power grid's curtailment and load shedding dynamics. This surrogate model was developed in previous works and is an efficient and flexible tool mirroring Dispa-SET unit commitment and economic dispatch model.

The other key advancements include the integration of additional data from PyPSA-EUR, enabling both the integration of the SM and new investment assessments of renewable energy sources (RES), grid reinforcement, and storage installations. Additionally, new feedback mechanisms inspired by PID control theory simulate instantaneous societal responses aimed at reducing energy curtailment and load shedding.

A comparative analysis against the previous MEDEAS version and a practical case study demonstrate the enhanced model's utility in exploring new energy scenarios and providing meaningful insights for policymakers.


Fichier(s)

Document(s)

File
Access Erratum_main.pdf
Description: -
Taille: 4.11 MB
Format: Adobe PDF
File
Access main.pdf
Description:
Taille: 4.03 MB
Format: Adobe PDF

Auteur

  • Diffels, Noé ULiège Université de Liège > Mast. ing. civ. gén. énerg. fin. spéc. Net.

Promoteur(s)

Membre(s) du jury

  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi Voir ses publications sur ORBi
  • Solé, Jordi
  • Cornélusse, Bertrand ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
    ORBi Voir ses publications sur ORBi








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.