Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 33 | DOWNLOAD 31

Master thesis : Fast and Flexible Decision Making using CMOS Hardware

Giourgas, Nicolas ULiège
Promotor(s) : Franci, Alessio ULiège
Date of defense : 24-Jan-2025 • Permalink : http://hdl.handle.net/2268.2/22454
Details
Title : Master thesis : Fast and Flexible Decision Making using CMOS Hardware
Translated title : [fr] Prise de décision rapide et flexible à l'aide de composants CMOS
Author : Giourgas, Nicolas ULiège
Date of defense  : 24-Jan-2025
Advisor(s) : Franci, Alessio ULiège
Committee's member(s) : Drion, Guillaume ULiège
Redouté, Jean-Michel ULiège
Language : English
Number of pages : 58
Keywords : [fr] Positive feedback
[fr] Hysteresis
[fr] Multistability
[fr] Decision-Making
[fr] Fast and Flexible
[fr] Low Power consumption
Discipline(s) : Engineering, computing & technology > Electrical & electronics engineering
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil électricien, à finalité spécialisée en Neuromorphic Engineering
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[fr] This thesis focuses on the study and implementation of neuromorphic circuits capable of demonstrating multistability and hysteresis, inspired by biological neural processes. The main objective is to design a hardware system that mimics fast and flexible decision-making behavior. The work begins with an introduction to CMOS transistors, the circuits used and their operation. This is followed by a detailed study of bifurcations, feedback loops and the mathematical principles that lead to the existence of several equilibria. Possible equilibrium changes are explored and supported by numerical simulations performed in Julia. These principles are then implemented in an electrical circuit using the Cadence Virtuoso tool. The different simulations demonstrate the behavior of bistable and tristable circuits, with a particular focus on hysteresis loops that highlight state-dependent transitions and region of multistability. Experimental results confirmed theoretical predictions, showing multistable behavior with equilibrium states dependent on initial conditions and input current. This demonstrates the potential of CMOS neuromorphic circuits for low-power, biologically inspired decision-making. In conclusion, the combination of theoretical modeling, circuit simulations, and experimental testing validates the approach and provides insights into the design of energy-efficient and adaptive neuromorphic systems.


File(s)

Document(s)

File
Access TFE.pdf
Description:
Size: 2.5 MB
Format: Adobe PDF
File
Access TFE_Abstract.pdf
Description:
Size: 48.88 kB
Format: Adobe PDF

Author

  • Giourgas, Nicolas ULiège Université de Liège > Master ing. civ. électr. fin. spéc. neur. engi.

Promotor(s)

Committee's member(s)

  • Drion, Guillaume ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
    ORBi View his publications on ORBi
  • Redouté, Jean-Michel ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes microélectroniques intégrés
    ORBi View his publications on ORBi
  • Total number of views 33
  • Total number of downloads 31










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.