Travail de fin d'études et stage[BR]- Travail de fin d'études : Design and Development of a Computer-Aided Quality Inspection Station Using Hybrid AI and Rule-Based Image Processing Techniques[BR]- Stage d'insertion professionnelle : Eutomation & Scansys (Eupen, BE)
Beckers, Thibault
Promoteur(s) :
Bruls, Olivier
Date de soutenance : 30-jui-2025/1-jui-2025 • URL permanente : http://hdl.handle.net/2268.2/23171
Détails
| Titre : | Travail de fin d'études et stage[BR]- Travail de fin d'études : Design and Development of a Computer-Aided Quality Inspection Station Using Hybrid AI and Rule-Based Image Processing Techniques[BR]- Stage d'insertion professionnelle : Eutomation & Scansys (Eupen, BE) |
| Titre traduit : | [fr] Conception et développement d'une station de contrôle qualité assistée par ordinateur utilisant des techniques hybrides d’intelligence artificielle et de traitement d’images basé sur des règles |
| Auteur : | Beckers, Thibault
|
| Date de soutenance : | 30-jui-2025/1-jui-2025 |
| Promoteur(s) : | Bruls, Olivier
|
| Membre(s) du jury : | Duysinx, Pierre
Arnst, Maarten
Carpentier, Pierre |
| Langue : | Anglais |
| Nombre de pages : | 154 |
| Discipline(s) : | Ingénierie, informatique & technologie > Ingénierie mécanique |
| Institution(s) : | Université de Liège, Liège, Belgique |
| Diplôme : | Master en ingénieur civil mécanicien, à finalité spécialisée en technologies durables en automobile |
| Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] In production settings where accuracy and consistency are key, visual quality inspection remains a core component of the production process. Traditional rule-based approaches, while being rapid and reliable, lack adaptability for coping with complex or unforeseen varieties of defects. Artificial intelligence techniques offer greater adaptability but are computationally and data-intensive, and at times, not interpretable. This thesis proposes the development of a hybrid quality inspection station which combines both approaches and takes advantage of their respective strengths.
The system is deployed using a modular Python platform so that both conventional image processing techniques and AI models can be integrated into an integrated, user-configurable framework. The approach is integrated with industrial Programmable Logic Controllers (PLCs) to provide for compatibility in real-world production environments and control systems. In particular, the system targets surface inspection of machined components, where the detection of over-machining defects or subtle cracks requires precision and context adaptation.
Development involved a detailed decomposition of hardware constraints, system latency, and model complexity versus inference time trade-offs. Different inspection pipelines were explored, ranging from rule-based threshold techniques to convolutional neural networks. The outcome shows that the hybrid architecture enables a balanced optimum between interpretability and strong detection, and modular upgrades or reconfiguration based on production needs are enabled.
In conclusion, this thesis provides a robust and scalable industrial real-time quality control platform that balances deterministic reasoning with intelligent inference methods. It provides a foundation for horizontally deployable and scalable expansion and integration of additional AI capability within visual inspection systems.
Fichier(s)
Document(s)
Abstract_Thibault_Beckers.pdf
Description: Abstract
Taille: 74.99 kB
Format: Adobe PDF
Master_Thesis_BECKERS_Thibault.pdf
Description:
Taille: 36.45 MB
Format: Adobe PDF
Annexe(s)
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.

Master Thesis Online

