Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS

Cross-Family U-Net Landmark Heatmap Regression For Butterfly Wings -- Context and Generalization by Grouping

Download
Akkawi, Jad ULiège
Promotor(s) : Geurts, Pierre ULiège ; Marée, Raphaël ULiège
Date of defense : 30-Jun-2025/1-Jul-2025 • Permalink : http://hdl.handle.net/2268.2/23219
Details
Title : Cross-Family U-Net Landmark Heatmap Regression For Butterfly Wings -- Context and Generalization by Grouping
Author : Akkawi, Jad ULiège
Date of defense  : 30-Jun-2025/1-Jul-2025
Advisor(s) : Geurts, Pierre ULiège
Marée, Raphaël ULiège
Committee's member(s) : Van Droogenbroeck, Marc ULiège
Wehenkel, Louis ULiège
Debat, Vincent 
Language : English
Keywords : [en] Butterfly morphometrics
[en] landmark detection
[en] U-Net architecture
[en] anatomical landmark grouping
[en] cross-family generalization
[en] YOLOv8
[en] heatmap regression
[en] deep learning
[en] wing venation patterns
[en] landmark index matching
Discipline(s) : Physical, chemical, mathematical & earth Sciences > Earth sciences & physical geography
Engineering, computing & technology > Computer science
Life sciences > Biotechnology
Target public : Researchers
Professionals of domain
Student
General public
Other
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This thesis presents a novel approach to automated landmark detection on butterfly wings using deep learning techniques, addressing the challenge of cross-family generalization in morphometric analysis. Accurate landmark detection is essential for studying morphological variations in butterflies, but traditional manual annotation is time-consuming and impedes large-scale research. We propose several improvements to U-Net-based landmark detection through anatomically-informed grouping strategies and enhanced preprocessing. By integrating YOLOv8 for butterfly detection and cropping before landmark prediction, we significantly improve input quality. We explore multiple model configurations, comparing single-landmark versus multi-landmark channel approaches, different loss functions (MSE and FBCE), and varying input resolutions (256×256 and 512×512). Our experiments on specimens from the Papilionidae family demonstrate that anatomically-guided multi-landmark grouping achieves convergence four times faster than conventional approaches while maintaining comparable accuracy. Higher resolution models (512×512) show substantially improved precision when evaluated at original image scale.
Most importantly, our cross-family generalization experiments reveal that models trained on the combined Papilionidae and Morpho datasets with strategic landmark grouping and index matching successfully adapt to varying numbers of landmarks across butterfly families. These findings advance morphometric analysis capabilities in Lepidopterology and demonstrate the value of incorporating domain knowledge into neural network architecture design for biological feature detection tasks.


File(s)

Document(s)

Annexe(s)

File
Access Code for Cross-Family U-Net.zip
Description:
Size: 110.44 kB
Format: Unknown
File
Access Images for Cross-Family U-Net.zip
Description:
Size: 3.64 MB
Format: Unknown

Author

  • Akkawi, Jad ULiège Université de Liège > Mast. ing. civ. sc. don. fin. spéc.

Promotor(s)

Committee's member(s)

  • Van Droogenbroeck, Marc ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
    ORBi View his publications on ORBi
  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Debat, Vincent








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.