Modeling and control of active seismic isolation systems with non-minimum phase zeros for gravitational wave detectors Integration internship
Bertoglia, Massimo
Promotor(s) :
Collette, Christophe
;
Sacré, Pierre
Date of defense : 30-Jun-2025/1-Jul-2025 • Permalink : http://hdl.handle.net/2268.2/23300
Details
| Title : | Modeling and control of active seismic isolation systems with non-minimum phase zeros for gravitational wave detectors Integration internship |
| Translated title : | [fr] Modélisation et commande de systèmes d’isolation sismique active avec zéros non minimum de phase pour les détecteurs d’ondes gravitationnelles |
| Author : | Bertoglia, Massimo
|
| Date of defense : | 30-Jun-2025/1-Jul-2025 |
| Advisor(s) : | Collette, Christophe
Sacré, Pierre
|
| Committee's member(s) : | Drion, Guillaume
Kerschen, Gaëtan
|
| Language : | English |
| Number of pages : | 58 |
| Keywords : | [en] active isolation [en] gravitational wave detectors [en] non-minimum phase zeros [en] inertial sensors [en] tilt-horizontal coupling [en] transfer function [en] seismic isolation [en] experimental validation [en] system dynamics |
| Discipline(s) : | Engineering, computing & technology > Aerospace & aeronautics engineering |
| Target public : | Researchers Student |
| Institution(s) : | Université de Liège, Liège, Belgique |
| Degree: | Master en ingénieur civil en aérospatiale, à finalité spécialisée en "aerospace engineering" |
| Faculty: | Master thesis of the Faculté des Sciences appliquées |
Abstract
[en] This thesis investigates the origin of non-minimum phase zeros in the control of seismic isolation platforms, with a particular focus on gravitational wave detectors such as LIGO, Virgo and Einstein Telescope. These detectors require extreme precision, and even small parasitic dynamic effects can severely impair their sensitivity. Through a combination of analytical modeling, numerical simulations using MATLAB Simscape, and experimental validation, this study explores how the location and configuration of sensors and actuators affect the appearance and nature of transmission zeros. The results highlight the importance of structural geometry in mitigating tilt-horizontal coupling and show that careful sensor placement and mechanical decoupling are essential to achieving effective active control. The findings contribute to improving the robustness and bandwidth of control systems in next-generation detectors, with potential applications in other high-precision engineering systems.
Cite this master thesis
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.

Master Thesis Online


Thesis_BERTOGLIA.pdf