Master thesis and internship[BR]- Master's thesis : Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction formulations to simulate bird impacts[BR]- Integration internship
Quettier, Nathan
Promoteur(s) :
Ponthot, Jean-Philippe
Date de soutenance : 30-jui-2025/1-jui-2025 • URL permanente : http://hdl.handle.net/2268.2/23348
Détails
| Titre : | Master thesis and internship[BR]- Master's thesis : Arbitrary Lagrangian-Eulerian and Fluid-Structure Interaction formulations to simulate bird impacts[BR]- Integration internship |
| Titre traduit : | [fr] Formulations Lagrangienne-Eulérienne Arbitraire et Interaction Fluide-Structure pour la simulation d’impacts d’oiseaux |
| Auteur : | Quettier, Nathan
|
| Date de soutenance : | 30-jui-2025/1-jui-2025 |
| Promoteur(s) : | Ponthot, Jean-Philippe
|
| Membre(s) du jury : | Boman, Romain
Toussaint, Brieuc |
| Langue : | Anglais |
| Nombre de pages : | 207 |
| Mots-clés : | [en] Abritrary Lagrangian-Eulerian [en] ALE [en] Fluid-Structure Interaction [en] Impact Simulation [en] Ls-Dyna [en] FSI |
| Discipline(s) : | Ingénierie, informatique & technologie > Ingénierie aérospatiale |
| Public cible : | Chercheurs Professionnels du domaine Etudiants |
| Institution(s) : | Université de Liège, Liège, Belgique |
| Diplôme : | Master en ingénieur civil en aérospatiale, à finalité spécialisée en "aerospace engineering" |
| Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] This thesis investigates the theoretical foundations, implementation details, and performance of the Arbitrary Lagrangian-Eulerian (ALE) and Fluid-Structure Interaction
(FSI) formulations in LS-DYNA, and compares them to the Smoothed Particle Hydrodynamics (SPH) method. A two-part approach was adopted.
First, a simple case study consisting of a plane-strain bar impact on a rigid wall was considered. The different ALE formulations in LS-DYNA were introduced, and their results
were compared to those of the Lagrangian formulation. Generally more computationally
expensive, they yielded comparable outcomes—sometimes of slightly lower accuracy—
with their mesh quality remaining acceptable despite large strains. The FSI formulation
was then introduced to model contact interactions between bodies and was compared
to conventional Lagrangian contact. Also more computationally expensive, it produced
similar results to the Lagrangian case, aside from slightly larger energy losses.
This initial study of the ALE and FSI behaviors revealed the influence of various parameters and highlighted the strengths and limitations of each formulation.
Second, a large-scale model—originally developed for SPH simulations—was used to evaluate the performance of the ALE and FSI formulations in terms of computational cost
and result fidelity compared to experimental data. While the ALE and FSI formulations
produced results similar to the SPH simulation, mesh-convergence issues limited the reliability of the comparison. The source of these issues could not be clearly identified,
partly due to the inherited complexity and uncertainties of the provided model. Despite
these challenges, the study demonstrated the potential of ALE and FSI formulations to
compete with SPH, especially when extended features such as mesh motion are utilized
to mitigate computational costs.
Fichier(s)
Document(s)
MasterThesis.pdf
Description:
Taille: 68.84 MB
Format: Adobe PDF
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.

Master Thesis Online


ThesisSummary.pdf