Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Evaluation of the global warming impact on the cooling demand in buildings worldwide

Télécharger
Verheyden, Antoine ULiège
Promoteur(s) : Lemort, Vincent ULiège
Date de soutenance : 30-jui-2025/1-jui-2025 • URL permanente : http://hdl.handle.net/2268.2/23353
Détails
Titre : Evaluation of the global warming impact on the cooling demand in buildings worldwide
Titre traduit : [fr] Évaluation de l'impact du réchauffement climatique sur la demande en refroidissement dans les bâtiments au niveau mondial.
Auteur : Verheyden, Antoine ULiège
Date de soutenance  : 30-jui-2025/1-jui-2025
Promoteur(s) : Lemort, Vincent ULiège
Membre(s) du jury : Zeoli, Alanis ULiège
Gendebien, Samuel ULiège
Andre, Philippe ULiège
Langue : Anglais
Nombre de pages : 94
Mots-clés : [en] Global warming
[en] Cooling demand
[en] Buildings
[en] Dynamic thermal model
[en] Passive cooling
[en] Cooling load
Discipline(s) : Ingénierie, informatique & technologie > Energie
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil en génie de l'énergie à finalité spécialisée en Energy Conversion
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] According to forecast statistics of the United Nations, the global population is expected to grow from 8.2 to 9.7 billion by 2050 and could approach 11 billion by 2100. The number of buildings and habitations is therefore expected to increase proportionally to the population growth. In the European Union, buildings account for 40% of the energy consumption and 36% of the greenhouse gas emissions, with HVAC systems being the biggest contributors. In the actual context of global warming, by the end of the XXI century, the global air temperature is predicted to increase up to 4.8K if global warming issues are not handled carefully regarding the greenhouse gas emissions. As a result, cooling is expected to become the fastest-increasing energy-consuming technology in buildings, making it a key focus for efforts to limit further global warming.

This thesis investigates the impact of global warming on the cooling demand of residential buildings worldwide. A dynamic thermal model was developed and validated to simulate the hourly indoor temperature and cooling loads under various climate conditions. Typical Meteorological Year (TMY) data for present (2001–2020) and future (2041–2060) periods were used to assess the evolution of cooling needs in multiple representative cities across different climate zones.

The results reveal a clear and consistent increase in cooling demand, particularly in regions already subject to warm or humid climates. Increases range from +15% to over +60% depending on the city. A sensitivity analysis was conducted to identify the most influential parameters on indoor temperature, such as solar gains, insulation levels, and internal heat sources. The simulation model was validated using real data from monitored test houses, achieving strong statistical accuracy.

In addition, several passive cooling strategies were tested in the model to assess their potential to reduce future cooling loads. Among these strategies were window shading, thermal mass enhancement using concrete layers, phase change materials (PCM), and night-time ventilation. These measures showed significant capacity to reduce future cooling loads, with combined reductions reaching up to 99% in some cases. However, their effectiveness varied by climate, underlining the need for context-specific design strategies.

This study emphasises the importance of anticipating future energy needs and rethinking building design in a warming world. While passive and active cooling solutions offer promising paths, long-term sustainability will also depend on broader changes in energy consumption behaviours and in the way our cities are designed and organised. Urban layout, building density, green spaces, and materials used play a key role in shaping the thermal performance and energy needs of buildings.


Fichier(s)

Document(s)

File
Access TFE.pdf
Description:
Taille: 7.72 MB
Format: Adobe PDF

Annexe(s)

File
Access Résumé_TFE.pdf
Description:
Taille: 245.84 kB
Format: Adobe PDF
File
Access cooling_demand_comparison_with_passive cooling.pdf
Description:
Taille: 49.07 kB
Format: Adobe PDF
File
Access cooling_demand_comparison_with_freecooling.pdf
Description:
Taille: 50.97 kB
Format: Adobe PDF

Auteur

  • Verheyden, Antoine ULiège Université de Liège > Mast. ing. civ. gén. énerg. fin. spéc. Energ. comp

Promoteur(s)

Membre(s) du jury

  • Zeoli, Alanis ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
    ORBi Voir ses publications sur ORBi
  • Gendebien, Samuel ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Thermodynamique
    ORBi Voir ses publications sur ORBi
  • Andre, Philippe ULiège Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Building Energy Monitoring and Simulation (BEMS)
    ORBi Voir ses publications sur ORBi








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.