Feedback

Faculté des Sciences
Faculté des Sciences
Mémoire

Linking environmental signals to the expression control of biosynthetic gene clusters in Actinomycetota

Télécharger
Jeunehomme, Clément ULiège
Promoteur(s) : Quinton, Loïc ULiège ; Rigali, Sébastien ULiège
Date de soutenance : 4-sep-2025 • URL permanente : http://hdl.handle.net/2268.2/23822
Détails
Titre : Linking environmental signals to the expression control of biosynthetic gene clusters in Actinomycetota
Titre traduit : [fr] Lier les signaux environnementaux au contrôle de l'expression des clusters de gènes biosynthétiques chez les Actinomycetota.
Auteur : Jeunehomme, Clément ULiège
Date de soutenance  : 4-sep-2025
Promoteur(s) : Quinton, Loïc ULiège
Rigali, Sébastien ULiège
Membre(s) du jury : Far, Johann ULiège
Ongena, Marc ULiège
Beaufay, François ULiège
Langue : Anglais
Nombre de pages : 72
Discipline(s) : Sciences du vivant > Microbiologie
Centre(s) de recherche : MSLab - CIP
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en biochimie et biologie moléculaire et cellulaire, à finalité approfondie
Faculté : Mémoires de la Faculté des Sciences

Résumé

[en] The objective of my master thesis was to advance the understanding of signaling pathways
that link environmental cues to the regulation of bacterial specialized metabolite production.
The first goal focused on assessing the capability of the COMMBAT software to predict
biosynthetic gene clusters (BGCs) regulated by specific transcription factor (TF) and signal
pairs, using DmdR1 and iron as a model system. Screening 1,105 Actinomycetota BGCs from
the MIBiG database, we identified several siderophore and non-siderophore clusters with
highly reliable predicted DmdR1 binding sites. Given that iron-mediated repression of
siderophores is well established, experimental validation via mass spectrometry imaging (MSI)
prioritized non-siderophore BGCs with diverse bioactivities. Comparative metabolomics
confirmed iron-dependent repression for cahuitamycin A, valinomycin, and iminimycins,
evidenced by decreased metabolite signals upon iron addition. In contrast, no target
metabolites were detected for lenoremycin, aureonuclemycin, oxazolomycin, or skyllamycins,
likely due to suboptimal culture conditions, the need for additional elicitors, weak (false
positive) DmdR1 binding sites, or limitations in MALDI-MSI detection. Overall, COMMBAT
proved to be an effective tool for uncovering novel links between environmental signals and
secondary metabolite biosynthesis.
The second objective aimed to identify the sugars associated with the LamR transcription
factor, predicted to regulate multiple BGCs in Actinomycetota. Regulon prediction revealed a
conserved 14-nt palindromic LamR binding site upstream of genes encoding laminarinases
and an ABC-type sugar transporter operon (lamEFG), implicating laminaribiose (L2) and
laminaritriose (L3), the degradation products of callose/laminarin, as potential environmental
signals. To validate this, LamE protein was heterologously expressed and purified, and ligand
binding was characterized using differential scanning fluorimetry (DSF). These studies
demonstrated high-affinity binding of LamE to L2 and L3 (submicromolar range), with weaker
interactions observed for cellobiose and cellotriose. Interestingly, some Streptomyces species
lacking lamEFG still metabolize laminarin, suggesting an alternative transporter. The cebEFG
operon, responsible for cellobiose and cellotriose uptake, was identified as a likely
compensatory system due to the similarity between LamR and CebR transcription factor
binding sites. Purified CebE exhibited similarly high-affinity binding to both laminarin-derived
and cellobiose sugars, indicating functional overlap. Isothermal titration calorimetry (ITC)
further confirmed micromolar affinities and suggested protein dimerization. Collectively, these
findings support L2 and L3 as novel environmental signals sensed by LamR and highlight the
interplay between LamEFG and CebEFG transporters, positioning these sugars as new
regulatory molecules controlling BGC expression via LamR.


Fichier(s)

Document(s)

File
Access MASTER THESIS - ClémentJeunehomme.pdf
Description:
Taille: 4.54 MB
Format: Adobe PDF

Auteur

  • Jeunehomme, Clément ULiège Université de Liège > Master bioch. & biol. mol. , fin. approf.

Promoteur(s)

Membre(s) du jury









Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.