Feedback

Faculté des Sciences
Faculté des Sciences
MASTER THESIS

Research master thesis

Download
Samra ULiège
Promotor(s) : Nguyen, Ngoc Duy ULiège ; Fleischmann, Simon
Date of defense : 4-Sep-2025/5-Oct-2025 • Permalink : http://hdl.handle.net/2268.2/23883
Details
Title : Research master thesis
Translated title : [en] Influence of interlayer spacing and electrolyte composition on the lithium- and sodium intercalation properties of layered titanate electrodes.
Author : Samra ULiège
Date of defense  : 4-Sep-2025/5-Oct-2025
Advisor(s) : Nguyen, Ngoc Duy ULiège
Fleischmann, Simon 
Committee's member(s) : Dreesen, Laurent ULiège
Dupé, Bertrand ULiège
Strivay, David ULiège
Language : English
Number of pages : 82
Keywords : [en] energy storage
[en] Layered Transition Metal oxides
[en] Nano-confinement
[en] Organic Pillaring
Discipline(s) : Physical, chemical, mathematical & earth Sciences > Physics
Research unit : Helmholtz Institute Ulm for electrochemistry
Target public : Researchers
Professionals of domain
Student
General public
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences physiques, à finalité approfondie
Faculty: Master thesis of the Faculté des Sciences

Abstract

[en] The improvement of electrochemical energy storage technology is crucial for facilitating the
shift to sustainable energy systems. Layered transition metal oxide (TMO) electrodes have
several fundamental problems, including slow ion transport, poor electrical conductivity,
and instability at electrode-electrolyte interfaces. This thesis tackles constraints via
interlayer engineering of hydrogen tetratitanate (H2Ti4O9, HTO) using organic
functionalization.
Using n-propylamine and n-octylamine as pillar molecules, we increased the interlayer
spacing of H2Ti4O9 to generate nanoconfined conditions conducive to ion-solvent co
intercalation. Structural characterization demonstrated the successful production of pillared
hybrid materials, while morphological investigation revealed that the alteration maintained
the rod-like particle structure. Electrochemical evaluation in lithium-ion systems
demonstrated improved rate performance and lower polarization in pillared materials
compared to pure HTO, which is attributed to facilitated ion transport via the extended
interlayer galleries.
Furthermore, the HTOs materials are also tested in sodium-ion batteries using sodium
hexafluorophosphate (NaPF₆) dissolved in three different solvents: propylene carbonate
(PC), a mixture of ethylene carbonate and propylene carbonate (EC:PC, 1:1 by volume), and
diethylene glycol dimethyl ether (diglyme). The study discovered that pillaring the layers
increased the rate of sodium-ion mobility and the anodic capacity, along with coulombic
efficiency, particularly in batteries with ether-based electrolytes, where co-intercalation
processes are more likely to occur. Electrochemical impedance spectroscopy (EIS)
demonstrated a considerable decrease in charge transfer resistance as well as enhanced ion
mobility in the changed materials during charging and discharging.
Overall, this study demonstrates organic interlayer functionalization as a promising strategy
for improving ionic transport and interfacial kinetics in layered TMOs. The findings help to
rationally develop improved electrode structures for high-performance lithium- and sodium
ion batteries, which may have implications for scalable and sustainable energy storage
application.


File(s)

Document(s)

File
Access Masters thesis _Samra_Final_FAMEAIS.pdf
Description: Masters Thesis_Samra
Size: 2.86 MB
Format: Adobe PDF

Author

  • Samra ULiège Université de Liège > Master sc. phys., fin. approf. (FAME-AIS)

Promotor(s)

Committee's member(s)









All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.