Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
Mémoire

Understanding Extreme Price Movements in Large-Cap NASDAQ Equities: A Microstructure and Liquidity-Focused High-Frequency Analysis

Télécharger
Geudens, Nathan ULiège
Promoteur(s) : Hambuckers, Julien ULiège
Date de soutenance : 1-sep-2025/5-sep-2025 • URL permanente : http://hdl.handle.net/2268.2/24030
Détails
Titre : Understanding Extreme Price Movements in Large-Cap NASDAQ Equities: A Microstructure and Liquidity-Focused High-Frequency Analysis
Titre traduit : [fr] Comprendre les fluctuations extrêmes des cours boursiers pour des actions à forte capitalisation listée sur le NASDAQ : une analyse à haute fréquence axée sur la microstructure du marché et la liquidité
Auteur : Geudens, Nathan ULiège
Date de soutenance  : 1-sep-2025/5-sep-2025
Promoteur(s) : Hambuckers, Julien ULiège
Membre(s) du jury : Hübner, Philippe ULiège
Langue : Anglais
Nombre de pages : 108
Mots-clés : [en] Financial Markets
[en] Extreme Price Movements (EPMs)
[en] Market Microstructure
[en] Liquidity
[en] Limit Order Book
[en] High-Frequency Data
Discipline(s) : Sciences économiques & de gestion > Finance
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur de gestion, à finalité spécialisée en Financial Engineering
Faculté : Mémoires de la HEC-Ecole de gestion de l'Université de Liège

Résumé

[en] This master thesis examines intraday Extreme Price Movements (EPMs) as liquidity-driven
phenomena and asks two questions: which signals most reliably flag an imminent 10-second EPM,
and whether liquidity-based information adds incremental predictive power beyond standard
market-state controls. Using LOBSTER limit orderbook data for the ten largest NASDAQ-listed
equities, we reconstruct prices on a 10-second grid, label EPMs at the 99.9th percentile of the
distribution of absolute mid-quote returns, and estimate parsimonious logistic models that layer
liquidity signals on top of market-state predictors. Elastic-Net and unpenalized logistic regression
specifications are evaluated both in-sample and out-of-sample, with January to October 2020
used for model estimation and November to December 2020 for model evaluation.
We find that selectively incorporating a compact set of liquidity signals consistently improves
short-horizon EPM detection and probability calibration relative to the market-state benchmark.
Across assets and specifications, the most reliable precursors to EPMs are: recent absolute returns
as a volatility measure, sustained trading intensity, multi-level spread deterioration (loss of
market tightness), and execution pressure captured by fill rates. Together, these results indicate
that EPM risk is not mere noise but the joint outcome of market-state conditions and liquidity
dynamics. These indicators enable better, real-time detection of windows of heightened EPM
probability, supporting better-informed risk management for practitioners, regulators, and market
participants.


Fichier(s)

Document(s)

File
Access Master_Thesis_final_Geudens_Nathan.pdf
Description:
Taille: 5.2 MB
Format: Adobe PDF

Auteur

  • Geudens, Nathan ULiège Université de Liège > Master ing. gest., fin. spéc. fin. engineering

Promoteur(s)

Membre(s) du jury

  • Hübner, Philippe ULiège Université de Liège - ULiège > HEC Liège : UER > UER Finance, Comptabilité et Droit : Finance de Marché
    ORBi Voir ses publications sur ORBi








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.