Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Master thesis and internship[BR]- Master's thesis : Wall functions on CFD RANS calculations in high CPU resource configurations applied to boosters[BR]- Integration internship

Télécharger
Chanya Djomo, Verel ULiège
Promoteur(s) : Terrapon, Vincent ULiège
Date de soutenance : 8-sep-2025/9-sep-2025 • URL permanente : http://hdl.handle.net/2268.2/24859
Détails
Titre : Master thesis and internship[BR]- Master's thesis : Wall functions on CFD RANS calculations in high CPU resource configurations applied to boosters[BR]- Integration internship
Titre traduit : [fr] Fonctions de Paroi en CFD RANS dans des configurations hautes ressources CPU appliquées aux boosters
Auteur : Chanya Djomo, Verel ULiège
Date de soutenance  : 8-sep-2025/9-sep-2025
Promoteur(s) : Terrapon, Vincent ULiège
Membre(s) du jury : Hillewaert, Koen ULiège
Foerster, Pierre-Jean 
Langue : Anglais
Nombre de pages : 104
Mots-clés : [en] RANS
[en] CFD
[en] Booster
[en] Stator
[en] Rotor
[en] Wall laws
[en] Wall functions
[en] Mesh
[en] Turbomachinery
[en] CPU
Discipline(s) : Ingénierie, informatique & technologie > Ingénierie aérospatiale
Organisme(s) subsidiant(s) : Safran Aero Boosters
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil en aérospatiale, à finalité spécialisée en "aerospace engineering"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] The application of wall laws in constrained environments such as low-pressure compressors remains a long-standing challenge. This work investigates the applicability of the standard wall law on both a stator and a rotor, using the k-ϵ turbulence model. The study begins with a 2.75D analysis on a midspan section of the stator, only for a reference inlet angle aimed at rapidly identifying representative y+ distributions. The stator case was first tested at a Reynolds number of Re = 3 × 10^5, but this value proved insufficient to ensure a fully turbulent boundary layer from the inlet. A higher Reynolds number, Re = 1.2 × 10^6, was therefore adopted. For the rotor, simulations were performed at Re = 3 × 10^5. Preliminary results revealed a general loss of accuracy as the first-cell height increased, though performance improved again when approaching the end of the logarithmic layer of the inner boundary layer. From this parametric analysis, two representative y+ distributions were selected for the subsequent three-dimensional study. In 3D, three inlet angles are considered for the stator : the reference angle previously
mentionned and a deviations of plus and minus 5°. For the rotor, only a reference incidence angle is considered. In the case of the stator, wall laws encounter the greatest difficulties when dealing with the positive deviation with respect to the reference inlet angle. Time savings of around 40% for the stator and more than 50% for the rotor were achieved, although the associated loss of accuracy often offsets these benefits. Overall, The results remain relatively unconvincing, as significant discrepancies were observed; however, an ability to mention of wall laws to capture shocks, even if they mispredict their intensity and location. In addition, the mesh used inherently limited the applicability of wall laws. With the Autogrid5 topology, where cell size can only increase away from the wall, the refinement strategies recommended in the litterature could not be followed. As a result, careful calibration of the first-cell size and aspect ratio was required, underlining that the choice of mesh strongly conditions the accuracy of wall-law approaches. Finally, a key subtlety is that the notation (average of) y+ merely refers to a mean value along
the chord, whereas it is the full distribution range of y+ that determines validity. Therefore, relying
on the representative mean of y+ alone can be misleading, and attention should be given to the underlying y+ distributions when assessing wall-law performance.


Fichier(s)

Document(s)

File
Access Report_Verel.pdf
Description:
Taille: 19.78 MB
Format: Adobe PDF

Annexe(s)

File
Access Appendix_Verel.pdf
Description:
Taille: 3.33 MB
Format: Adobe PDF

Auteur

  • Chanya Djomo, Verel ULiège Université de Liège > Master ing. civ. aéro., fin. spéc. aer. eng.

Promoteur(s)

Membre(s) du jury

  • Hillewaert, Koen ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Design of Turbomachines and Propulsors (DoTP)
    ORBi Voir ses publications sur ORBi
  • Foerster, Pierre-Jean Safran Aero Boosters (SAB)








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.