Feedback

Faculté des Sciences
Faculté des Sciences
MASTER THESIS
VIEW 316 | DOWNLOAD 879

CraterNet : a Fully Convolutional Neural Network for Lunar Crater Detection Based on Remotely Sensed Data

Download
Glaude, Quentin ULiège
Promotor(s) : Cornet, Yves ULiège
Date of defense : 26-Jun-2017/27-Jun-2017 • Permalink : http://hdl.handle.net/2268.2/2486
Details
Title : CraterNet : a Fully Convolutional Neural Network for Lunar Crater Detection Based on Remotely Sensed Data
Translated title : [fr] CraterNet : un réseau neuronal entièrement convolutif pour la détection de cratères lunaires sur base de produits issus de la télédétection
Author : Glaude, Quentin ULiège
Date of defense  : 26-Jun-2017/27-Jun-2017
Advisor(s) : Cornet, Yves ULiège
Committee's member(s) : Demoulin, Alain ULiège
Geurts, Pierre ULiège
Van Droogenbroeck, Marc ULiège
Language : English
Number of pages : 159
Keywords : [en] Fully Convolutional Networks
[en] Crater Detection
[en] Deep Learning
Discipline(s) : Engineering, computing & technology > Computer science
Physical, chemical, mathematical & earth Sciences > Earth sciences & physical geography
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences géographiques, orientation géomatique et géométrologie, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences

Abstract

[en] In this master thesis, we propose a novel approach to detect lunar craters using new deep learning advances. The architecture of the model employed is a fully convolutional neural network that uses the freely available remotly sensed data from the «Lunar Reconnaissance Orbiter» space probe. In this brief, we discuss the methodology, the choices made and the evaluation of the model with different visual and quantitative results in addition to the source code.


File(s)

Document(s)

File
Access [QUENTIN][GLAUDE][2017].pdf
Description: CraterNet : a Fully Convolutional Neural Network for Crater Detection on Lunar Remotely Sensed Data
Size: 22.86 MB
Format: Adobe PDF

Annexe(s)

File
Access [QUENTIN][GLAUDE][2017].csv
Description: Lunar crater dataset
Size: 750.58 kB
Format: Unknown

Author

  • Glaude, Quentin ULiège Université de Liège > Master sc. géogr., orient. géomat. & géomét., à fin.

Promotor(s)

Committee's member(s)

  • Demoulin, Alain ULiège Université de Liège - ULg > Département de géographie > Unité de géographie physique et quaternaire (UGPQ)
    ORBi View his publications on ORBi
  • Geurts, Pierre ULiège Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Van Droogenbroeck, Marc ULiège Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
    ORBi View his publications on ORBi
  • Total number of views 316
  • Total number of downloads 879










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.