Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS

Master thesis : Automatic Quality Assessment of Digital Comics Using Machine Learning

Download
Haas, Bastien ULiège
Promotor(s) : Geurts, Pierre ULiège
Date of defense : 23-Jan-2026 • Permalink : http://hdl.handle.net/2268.2/25226
Details
Title : Master thesis : Automatic Quality Assessment of Digital Comics Using Machine Learning
Translated title : [fr] Évaluation automatique de la qualité de bandes dessinées digitales basée sur l'apprentissage automatique
Author : Haas, Bastien ULiège
Date of defense  : 23-Jan-2026
Advisor(s) : Geurts, Pierre ULiège
Committee's member(s) : Louppe, Gilles ULiège
Deliège, Adrien ULiège
Language : English
Number of pages : 78
Keywords : [en] Machine Learning,
[en] Comics,
Discipline(s) : Engineering, computing & technology > Computer science
Research unit : Deuse SRL
Target public : Researchers
Professionals of domain
Student
General public
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] The objective of this master's thesis is to develop an algorithm capable of assessing the quality of digital comics using machine learning. This was conducted to enable \textit{Stripik}, a mobile application that allows users to write comics with a generative tool and also read the content created, to recommend works that meet a certain quality threshold. The learning process must be based on comics that have been manually assessed beforehand.

The development of such an algorithm first involves selecting and managing the data to be used during the learning phase. Afterwards, the data were divided into three main categories : statistical data, textual data and graphical data. For each category, data were specifically processed, according to the corresponding category. A predictive model then had to be chosen to determine which one would be implemented in the final algorithm. This choice was made sequentially, beginning with the optimization of each model individually on a training set, followed by a comparison of the optimized models using a validation set. The resulting model, trained on the selected and processed data, ultimately constitutes the algorithm to be developed in this work.

This thesis concludes with encouraging results, although they are not yet fully satisfactory in terms of performance. Future perspectives for improving the assessment algorithm and its outcomes are proposed.


File(s)

Document(s)

File
Access Abstract.pdf
Description:
Size: 99.97 kB
Format: Adobe PDF
File
Access Résumé.pdf
Description:
Size: 84.7 kB
Format: Adobe PDF
File
Access Automatic_Quality_Assessment_of_Digital_Comics_Using_Machine_Learning.pdf
Description:
Size: 6.67 MB
Format: Adobe PDF

Author

  • Haas, Bastien ULiège Université de Liège > Mast. ing. civ. sc. don. fin. spéc.

Promotor(s)

Committee's member(s)

  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Deliège, Adrien ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
    ORBi View his publications on ORBi








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.