Simulation of geophysical wave propagation using domain decomposition techniques
Royer, Anthony
Promotor(s) : Geuzaine, Christophe
Date of defense : 26-Jun-2017/27-Jun-2017 • Permalink : http://hdl.handle.net/2268.2/2531
Details
Title : | Simulation of geophysical wave propagation using domain decomposition techniques |
Translated title : | [fr] Simulation de la propagation des ondes géophysiques à l'aide de méthodes de décomposition de domaine |
Author : | Royer, Anthony |
Date of defense : | 26-Jun-2017/27-Jun-2017 |
Advisor(s) : | Geuzaine, Christophe |
Committee's member(s) : | Boman, Romain
Arnst, Maarten Béchet, Eric |
Language : | English |
Number of pages : | 81 |
Keywords : | [en] domain decomposition [en] wave simulation |
Discipline(s) : | Physical, chemical, mathematical & earth Sciences > Multidisciplinary, general & others |
Complementary URL : | https://github.com/AnRoyer/Tfe.git |
Institution(s) : | Université de Liège, Liège, Belgique |
Degree: | Master en ingénieur civil physicien, à finalité approfondie |
Faculty: | Master thesis of the Faculté des Sciences appliquées |
Abstract
[en] Wave problems are often encountered in several fields of physics. Acoustic, electromagnetic, seismology and mechanical waves in solids or fluids, inter alia. These problems can be solved using their harmonic solutions that correspond to solutions subjected to harmonic excitations. Using a finite element method, a fairly fine mesh needs to be used to properly represent the wave behavior. In a three-dimensional problem, this can lead to a significant number of complex unknowns, especially at high frequencies. Thus, using direct sparse solvers is not suitable for these kinds of problems, while iterative solvers converge slowly or worse, diverge. Domain decomposition methods such are used to overcome this problem. This work analyses the Schwarz domain decomposition method, presents a partitioning tool used to automatically create partitioned meshes and applies the method to geophysical wave.
File(s)
Document(s)
Annexe(s)
Cite this master thesis
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.