Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 81 | DOWNLOAD 448

Final work :  Homogenization of single crystal nickel based super-alloys. An overview of the creep behavior

Download
Carrillo Segura, Simon ULiège
Promotor(s) : Noels, Ludovic ULiège
Date of defense : 25-Jun-2020/26-Jun-2020 • Permalink : http://hdl.handle.net/2268.2/8789
Details
Title : Final work :  Homogenization of single crystal nickel based super-alloys. An overview of the creep behavior
Author : Carrillo Segura, Simon ULiège
Date of defense  : 25-Jun-2020/26-Jun-2020
Advisor(s) : Noels, Ludovic ULiège
Committee's member(s) : Duchene, Laurent ULiège
Collin, Frédéric ULiège
Ponte-Castaneda, Pedro 
Language : English
Keywords : [en] Homogenization
[en] Unit Cell
[en] Crystal Plasticity
[en] Creep
Discipline(s) : Engineering, computing & technology > Aerospace & aeronautics engineering
Target public : Researchers
Student
Institution(s) : Université de Liège, Liège, Belgique
University of Pennsylvania, Philadelphia, United States of America
Degree: Master en ingénieur civil en aérospatiale, à finalité spécialisée en "turbomachinery aeromechanics (THRUST)"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] An overview of the creep behavior of an aeronautical-type single crystal turbine blade is analyzed by means of two methodologies: a fully-optimized second order homogenization method and a Finite Element numerical approach. Micro-structure, i.e porosity level, is shown to have an important role in creep behaviour of porous FCC single crystals.
The homogenization-based constitutive model developed by Ponte-Castaneda makes use of the fully optimized second order variational approach of (Ponte Castañeda, 2015), along with the iterated homogenization method of (Agoras and Ponte Castañeda, 2013) to define a constitutive model for the finite-strain macroscopic response of porous single crystal in the sense of visco-plasticity. For the computations (Song and Ponte Castañeda, 2017a), Song et al. implemented a numerical implementation in Fortran language.
The numerical finite element calculations are carried out using a three dimensional Finite element code of a Unit Cell. The single crystal matrix is defined by a simple power law viscous crystal plasticity constitutive relation. The Unit Cell is initially cubic with a sphere or ellipsoid located in the center, constituting the inclusion phase. Fully periodic boundary conditions are imposed in the Unit Cell Finite element model by means of the MPC capability of ABAQUS and the "dummy node" technique.
The effect of crystal orientation and loading conditions on the micro-structure evolution in a face center cubic (FCC) single crystal is analyzed. Two different initial crystal orientations are considered. The calculations are carried out for six different values of stress triaxiality and for three different Lode parameter. Additionally, the effect of an initial ellipsoidal void shape and the effect of the initial porosity level is addressed.
Micro-structure evolution in an FCC single crystal may produce a softening or hardening effect related to the void growth or collapse, setting the base for further research in terms of enhancement of creep properties of FCC single crystals. Strain rates along deformation were analyzed allowing to understand the physics behind micro-structure evolution and its consequence in creep properties. Moreover, stress concentration around the inclusion phase depends highly on the crystal orientation and loading conditions.


File(s)

Document(s)

File
Access MasterThesis_Simon_Carrillo.pdf
Description:
Size: 6.38 MB
Format: Adobe PDF
File
Access Summary_SimonCarrillo.pdf
Description: Summary
Size: 140.96 kB
Format: Adobe PDF

Author

  • Carrillo Segura, Simon ULiège Université de Liège > Master ingé. civ. aérospat., à fin. (THRUST)

Promotor(s)

Committee's member(s)

  • Duchene, Laurent ULiège Université de Liège - ULiège > Département ArGEnCo > Analyse multi-échelles des matériaux et struct. du gén. civ.
    ORBi View his publications on ORBi
  • Collin, Frédéric ULiège Université de Liège - ULiège > Département ArGEnCo > Géotechnique
    ORBi View his publications on ORBi
  • Ponte-Castaneda, Pedro University of Pennsylvania
  • Total number of views 81
  • Total number of downloads 448










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.