Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 76 | DOWNLOAD 409

Master's Thesis : Simulation of a programmable RLC impedance (analog and digital implementation)

Télécharger
El Osrouti, Mohamed ULiège
Promoteur(s) : Redouté, Jean-Michel ULiège
Date de soutenance : 25-jui-2020/26-jui-2020 • URL permanente : http://hdl.handle.net/2268.2/8975
Détails
Titre : Master's Thesis : Simulation of a programmable RLC impedance (analog and digital implementation)
Titre traduit : [fr] Simulation d'une impédance RLC programmable (implémentation analogique et numérique)
Auteur : El Osrouti, Mohamed ULiège
Date de soutenance  : 25-jui-2020/26-jui-2020
Promoteur(s) : Redouté, Jean-Michel ULiège
Membre(s) du jury : Vanderheyden, Benoît ULiège
Vanderbemden, Philippe ULiège
Martin, Nicolas ULiège
Langue : Anglais
Nombre de pages : 110
Mots-clés : [fr] impedance, filter, op amps, analog, digital
[fr] programmable
Discipline(s) : Ingénierie, informatique & technologie > Ingénierie électrique & électronique
Organisme(s) subsidiant(s) : Centre spatial de Liège
Centre(s) de recherche : Centre spatial de Liège
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Grand public
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil électricien, à finalité spécialisée en "signal processing and intelligent robotics"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[fr] Different kinds of electronic load simulators for testing of power supply have been developed and commercialised. A programmable RLC impedance with adjustable R, L and C can be useful to simulate the load of a generator like a motor for example. Some companies may be interested in testing their voltage/current generators under some conditions and study their behaviours. Both inductive and capacitive loads can be simulated by adjusting the phase difference between the voltage and current waveforms.

However, there exist many drawbacks, for example, it can provide only 4 modes including constant resistance (pure resistive load), constant power, constant current and constant voltage to simulate simple dc load. But more often, they cannot simulate a RL or RC load with a good dynamic response. The main objective of this master thesis is to design, manufacture and test a programmable RLC impedance. This circuit must cover the entire inductive-resistive-capacitive range (voltage/current phase shift between -90° and
+90°). The RLC load must be able to dissipate up to 5 W. Two different implementations are suggested: the analog and digital RLC impedance with their pros and cons. The first step is to design an analog impedance. A gyrator is used in order to simulate an non ideal inductor with parallel redundant resistor. The main property of the gyrator is to invert the current-voltage characteristic of an electrical component. This way, a capacitor can be used to get a non-ideal variable inductor. The inductance can be adjusted with simple potentiometers. The second step consists in removing the parallel resistors in order to simulate an ideal inductor and reach the 90° phase-shift. This objective can be achieved by connecting the Negative Impedance Converter (N.I.C) in
parallel to the gyrator. After that, a more detailed study of the output current and
output voltage across the op amps allows to highlight the main limitations of such
circuits. The voltage and current saturation of the op amps limit the available range of inductance/capacitance values. Several simulations with a real precision op amp (AD744) are performed. Finally, those circuits have been implemented on a breadboard in the CSL laboratory1 with commercial op amps such as the famous LM324. The results in terms of output current are compared with the simulations.
The second step consists in designing a digital RLC impedance. By contrast to the analog impedance, the filtering process is done digitally using the microcontroller ATMEGA2560. A software feedback control approach is employed to adjust the current amplitude and the power factor. The objective is to maintain the impedance value constant regardless of the variation of the source voltage amplitude. Many parameters such as the sampling frequency and the resolution of the ADC/DAC may affect the quality of the output current. The voltage is converted to current using a Howland current source. Several simulations have been performed to visualise the performance of the digital RLC filter.

Finally, the analog and digital programmable RLC impedances are compared in terms of their maximum input voltage, inductance/capacitance range, frequency, ... It will be shown that the digital implementation offers more flexibility to the range of the inductance/capacitance values than the analog impedance.


Fichier(s)

Document(s)

File
Access TFE___Programmable_RLC_impedance.pdf
Description: -
Taille: 3.61 MB
Format: Adobe PDF
File
Access Erratum_TFE___Programmable_RLC_impedance.pdf
Description: -
Taille: 3.61 MB
Format: Adobe PDF

Auteur

  • El Osrouti, Mohamed ULiège Université de Liège > Master ingé. civ. électr., à fin.

Promoteur(s)

Membre(s) du jury

  • Vanderheyden, Benoît ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique et microsystèmes
    ORBi Voir ses publications sur ORBi
  • Vanderbemden, Philippe ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
    ORBi Voir ses publications sur ORBi
  • Martin, Nicolas ULiège Université de Liège - ULiège > CSL (Centre Spatial de Liège)
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 76
  • Nombre total de téléchargements 409










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.