Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire

Master's Thesis : State segmentation and forecasting of production processes by machine learning

Télécharger
Roekens, Joachim ULiège
Promoteur(s) : Wehenkel, Louis ULiège
Date de soutenance : 25-jui-2020/26-jui-2020 • URL permanente : http://hdl.handle.net/2268.2/9058
Détails
Titre : Master's Thesis : State segmentation and forecasting of production processes by machine learning
Titre traduit : [fr] Segmentation d'états et prédiction de processus de production par apprentissage automatique
Auteur : Roekens, Joachim ULiège
Date de soutenance  : 25-jui-2020/26-jui-2020
Promoteur(s) : Wehenkel, Louis ULiège
Membre(s) du jury : Geurts, Pierre ULiège
Louppe, Gilles ULiège
Ghaye, Olivier 
Langue : Anglais
Mots-clés : [en] machine learning
[en] production process
[en] artificial intelligence
[en] AI
[en] random tree
[en] deep learning
[en] segmentation
[en] forecasting
[en] time series
Discipline(s) : Ingénierie, informatique & technologie > Sciences informatiques
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil en informatique, à finalité spécialisée en "intelligent systems"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] In this thesis, two different tasks concerned with time series of production processes are tackled. The first one is a time series segmentation into different classes for each timestep of the time series. An accurate timestep classification has multiple useful applications such as doing retrospective analyses of production processes based on the percentage of occurrence of each class or implementing an intelligent system to activate or deactivate alarms applied to processes based on their current state. Then, the second task is a multistep multivariate time series forecasting*. It can be used to forecast specific events in order to avoid them or to prepare for them.

This work focuses on the application of machine learning algorithms to those two problems with the objective to automate and generalize the solution to the broadest range of production datasets as possible. The end goal is to study the potential of those algorithms, rather than delivering a perfect solution.

For the time series segmentation, tree-based models are considered. In the final evaluation, they display an irregular performance alternating between very high and low accuracy depending on the classes. However, the lack of precision might be caused by an external bias in the data labelling. Still, its performance on the best classes reveals its high potential.

For the time series forecasting, the study focuses on deep learning algorithms which gave good results in this domain. Two state of the art level models are tested: DeepAR and Temporal Fusion Transformers (TFT). The evaluation demonstrated the difficulty encountered by the models and, by extension, the difficulty of an automated timestep forecasting of a wide range of datasets by deep learning.

*Multistep time series forecasting denotes the fact of predicting multiple timesteps of a time series while the multivariate term indicates that forecasts are done on more than one value for each timestep.


Fichier(s)

Document(s)

File
Access abstract.pdf
Description:
Taille: 319.27 kB
Format: Adobe PDF
File
Access thesis.pdf
Description:
Taille: 10.72 MB
Format: Adobe PDF

Annexe(s)

File
Access code.zip
Description: This archive contains all the code implemented during the study.
Taille: 175.36 kB
Format: Unknown

Auteur

  • Roekens, Joachim ULiège Université de Liège > Master ingé. civ. info., à fin.

Promoteur(s)

Membre(s) du jury

  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi Voir ses publications sur ORBi
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi Voir ses publications sur ORBi
  • Ghaye, Olivier








Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.