Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
MASTER THESIS
VIEW 134 | DOWNLOAD 35

Modeling systemic risk in the banking industry via a network of extremal dependencies - An approach based on Generalized Pareto regression and the LASSO

Download
Nikkels, Mirko ULiège
Promotor(s) : Hambuckers, Julien ULiège
Date of defense : 2-Sep-2020/8-Sep-2020 • Permalink : http://hdl.handle.net/2268.2/10190
Details
Title : Modeling systemic risk in the banking industry via a network of extremal dependencies - An approach based on Generalized Pareto regression and the LASSO
Translated title : [fr] Modélisation du risque systémique au sein de l'industrie bancaire via un réseau de dépendances d'extrema. Une approche basée sur une régression de Pareto généralisée et le LASSO.
Author : Nikkels, Mirko ULiège
Date of defense  : 2-Sep-2020/8-Sep-2020
Advisor(s) : Hambuckers, Julien ULiège
Committee's member(s) : Ittoo, Ashwin ULiège
Moreno Miranda, Nicolas ULiège
Language : English
Number of pages : 82
Keywords : [en] Systemic risk
[en] Generalized Pareto Distribution
[en] GPD
[en] Generalized Pareto Regression
[en] GPR
[en] Least Absolute Shrinkage and Selection Operator
[en] LASSO
[en] Extreme events
[en] Banking network
[en] Extremal dependencies
[en] Systemic risk measure
[en] Value-at-Risk
[en] VaR
[en] EVT
[en] Extreme Value Theory
[en] POT
[en] Peaks-Over-Thresholds
[en] Banking industry
[fr] Risque systémique
[fr] Extrema
[fr] Secteur bancaire
[fr] LASSO
[fr] Pareto généralisée
Discipline(s) : Business & economic sciences > Finance
Business & economic sciences > International economics
Business & economic sciences > Quantitative methods in economics & management
Target public : Researchers
Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur de gestion, à finalité spécialisée en Financial Engineering
Faculty: Master thesis of the HEC-Ecole de gestion de l'Université de Liège

Abstract

[en] In this master thesis, we investigate the interdependency among 26 global banks, using the daily closings. We especially focus on extreme negative results and, therefore, use a certain threshold to only retain exceedances from the original data. The aim is to find, for each bank from the sample, the most significant subset of covariates explaining its daily returns thanks to past returns. To do so, the proposed methodology is based on Generalized Pareto Regressions and the Least Absolute Shrinkage and Selection Operator (LASSO). If the threshold is selected sufficiently high, we can consider our analysis to be part of the Extreme Value Theory and we can apply Peaks-Over-Thresholds methods. Consequently, it is possible to model the exceedances by a Generalized Pareto Distribution with scale and shape parameters. The selection of significant covariates is performed by the penalizing technique LASSO. Only significant regression coefficients are strong enough to not be shrunk exactly to zero by the penalty. While both of the time-varying parameters are functions of the covariates, the shape parameter will be focused on drawing conclusions.
We are truly convinced that the result of this work could be used to create an additional systemic risk measure. This should especially target banks exhibiting asset levels above $1000B. and banks originating from Europe, as these banks are more exposed and interconnected.


File(s)

Document(s)

File
Access Master_Thesis_NIKKELS_Mirko_S151375.pdf
Description:
Size: 1.88 MB
Format: Adobe PDF

Author

  • Nikkels, Mirko ULiège Université de Liège > Master ingé. gest., à fin.

Promotor(s)

Committee's member(s)

  • Ittoo, Ashwin ULiège Université de Liège - ULiège > HEC Liège : UER > UER Opérations : Systèmes d'information de gestion
    ORBi View his publications on ORBi
  • Moreno Miranda, Nicolas ULiège Université de Liège - ULiège > HEC Liège : UER > UER Finance et Droit : Analyse financière et finance d'entr.
    ORBi View his publications on ORBi
  • Total number of views 134
  • Total number of downloads 35










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.