Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
MASTER THESIS
VIEW 192 | DOWNLOAD 1034

Asset Allocation and Machine Learning: a performance analysis within distressed market conditions

Download
Shtini, Sindi ULiège
Promotor(s) : Hambuckers, Julien ULiège
Date of defense : 16-Jan-2023/27-Jan-2023 • Permalink : http://hdl.handle.net/2268.2/16750
Details
Title : Asset Allocation and Machine Learning: a performance analysis within distressed market conditions
Author : Shtini, Sindi ULiège
Date of defense  : 16-Jan-2023/27-Jan-2023
Advisor(s) : Hambuckers, Julien ULiège
Committee's member(s) : Jamar, Julie ULiège
Language : English
Number of pages : 49
Keywords : [en] Asset Allocation, Machine Learning
Discipline(s) : Business & economic sciences > Finance
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences de gestion, à finalité spécialisée en Banking and Asset Management
Faculty: Master thesis of the HEC-Ecole de gestion de l'Université de Liège

Abstract

[en] The objective of the thesis is to investigate the usefulness of popular investment algorithms and go beyond the traditional mean-variance optimization approach, through the use of a realistic investment universe of stocks and mutual funds. The subject of this thesis would consider asset allocation strategies generated from machine learning and robo-advisors, and compare their performance using state-of-the-art statistical approaches.


File(s)

Document(s)

File
Access Master Thesis - Sindi Shtini.pdf
Description:
Size: 527.52 kB
Format: Adobe PDF

Author

  • Shtini, Sindi ULiège Université de Liège > Master sc. gest., à fin.

Promotor(s)

Committee's member(s)

  • Total number of views 192
  • Total number of downloads 1034










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.