Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 37 | DOWNLOAD 124

Development of a 1D model for the prediction of piano key weirs discharge capacity

Download
Heinesch, Joachim ULiège
Promotor(s) : Erpicum, Sébastien ULiège ; Pirotton, Michel ULiège
Date of defense : 4-Sep-2023/5-Sep-2023 • Permalink : http://hdl.handle.net/2268.2/18200
Details
Title : Development of a 1D model for the prediction of piano key weirs discharge capacity
Translated title : [fr] Développement d'un modèle 1D pour la prédiction de la débitance des déversoirs de crue en touche de piano
Author : Heinesch, Joachim ULiège
Date of defense  : 4-Sep-2023/5-Sep-2023
Advisor(s) : Erpicum, Sébastien ULiège
Pirotton, Michel ULiège
Committee's member(s) : Vermeulen, Julien 
Language : English
Number of pages : 78
Keywords : [fr] Piano key weirs, dams safety, 1D modeling, WOLF1DPKW, parametric study
Discipline(s) : Engineering, computing & technology > Civil engineering
Commentary : Après plus d'une heure de combat contre ma mise en page, la marge de droite de ma bibliographie ne veut toujours pas s'ajuster. Je fournirai un erratum corrigeant cette erreur
Research unit : HECE
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil des constructions, à finalité spécialisée en "civil engineering"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[fr] This master’s thesis enhances a 1D flow model named WOLF1DPKW, designed to pre-
dict the discharge capacity of Piano Key Weirs (PKWs). These weirs hold paramount
importance for dam safety, playing a pivotal role both socially and technologically within
hydraulic infrastructures.
The model is built upon the concept of two adjacent water lines crossing the PKW,
exchanging water and lateral momentum. This allows for a 1D modeling approach. Prior
to any parametric optimization, the preliminary outcomes of this model necessitate re-
finement. Minimizing these discrepancies is the objective of this work, while maintaining
a strong grounding in physics.
After a brief introduction, the second chapter presents the existing model, identifies
its weaknesses, quantifies errors, and outlines ideas for potential improvements. The main
avenues explored are (1) the incline of the flow axis at the inlet, (2) a modification of the
lateral crest discharge coefficient, (3) an adjustment of the alpha coefficient characteriz-
ing lateral momentum exchange, and (4) a modification of the locations for lateral flux
extraction and injection.
Subsequently, a sampling of the provided database is conducted to maximize the rel-
evance of statistical analyses.
The fourth chapter showcases the outcomes of numerical simulations and the sen-
sitivity analyses. To maintain a resolutely physics-based perspective, these results are
examined using a hydraulic approach, allowing for both statistical and physical evalua-
tion of their relevance for model enhancement.
In conclusion, the findings of this research reveal that idea 1 is not retained, as a
horizontal flow axis at the inlet yields better results than an inclined axis. Idea 2 highlights
the significant influence of the lateral discharge coefficient at low flow rates, but not at
high flow rates, where the model error reaches a maximum. Idea 3 reflects a similar trend
to 2, with divergent behaviors observed in specific geometric configurations. Idea 4... (to
be continued).


File(s)

Document(s)

File
Access MasterThesis_HeineschJoachim.pdf
Description: -
Size: 10.94 MB
Format: Adobe PDF
File
Access Abstract.pdf
Description: -
Size: 182.8 kB
Format: Adobe PDF
File
Access Résumé.pdf
Description: -
Size: 192.75 kB
Format: Adobe PDF
File
Access MasterThesis_HeineschJoachim.pdf
Description: -
Size: 11.04 MB
Format: Adobe PDF
File
Access null
Description: -
Size: 11.03 MB
Format: Unknown

Author

  • Heinesch, Joachim ULiège Université de Liège > Master ingé. civ. constr., fin.

Promotor(s)

Committee's member(s)

  • Vermeulen, Julien EDF-CIH
  • Total number of views 37
  • Total number of downloads 124










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.