Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 145 | DOWNLOAD 123

Neuromorphic control of embodied central pattern generators

Télécharger
Fernandez Lorden, Christian ULiège
Promoteur(s) : Sacré, Pierre ULiège ; Drion, Guillaume ULiège
Date de soutenance : 4-sep-2023/5-sep-2023 • URL permanente : http://hdl.handle.net/2268.2/18256
Détails
Titre : Neuromorphic control of embodied central pattern generators
Titre traduit : [fr] Contrôle neuromorphique de générateurs de rythmes centraux incarnés
Auteur : Fernandez Lorden, Christian ULiège
Date de soutenance  : 4-sep-2023/5-sep-2023
Promoteur(s) : Sacré, Pierre ULiège
Drion, Guillaume ULiège
Membre(s) du jury : Franci, Alessio ULiège
Langue : Anglais
Nombre de pages : 94
Mots-clés : [en] Neuromorphic
[en] Control
[en] Bursting
[en] Pendulum
[en] Neuromodulation
[en] CPG
[en] Embodied Intelligence
Discipline(s) : Ingénierie, informatique & technologie > Multidisciplinaire, généralités & autres
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master : ingénieur civil électricien, à finalité spécialisée en "signal processing and intelligent robotics"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] The control of robotic locomotion poses important challenges. In particular, we
are still very far from achieving robotic locomotion control with the same degree of
robustness and adaptability to unexpected environmental perturbations exhibited
by moving biological systems.
This master’s thesis aims to create a robust and efficient controller for regulating
a simple mechanical system. Biological neuron models are used to create artificial
central pattern generators (CPGs) that form the core of the controller. Similar to
Yu et al., the inspiration of this thesis is the known electrophysiology, sensory
response, and modulation of biological CPGs.
This study explores the control of a simple resonant mechanical system (a pendulum) to achieve high-amplitude periodic motion without fine-tuning the neuron
parameters and with sensory feedback and weak actuation. The design follows multiple steps. It starts with the design and tuning of the controller using a single
neuron. This uncovers that only the motor neurons exhibiting a robust type of
bursting are able to robustly and easily adapt their excitable behavior to the
unknown mechanical system’s properties (damping, resonant frequency, mass, etc.).
This is followed by the natural addition of another motor neuron to form a CPG
and make the controller symmetric. This increases the achievable amplitude and
improves the resilience to perturbations in the controller parameters. Then, neuromodulation is added to allow the dynamic change of the controller properties to
control the amplitude of the oscillations. This leads to a trade-off between the speed
of convergence to the desired amplitude and the stability of the controller. Finally,
multiple controller-pendulum systems are interconnected at the controller level to
achieve the desired spatiotemporal pattern between the pendulums.
The results indicate that the neuromorphic approach is well-suited for the design
of robust controllers. The proposed controller demonstrates the ability to easily
adapt to the mechanical system properties to achieve the amplitude goal, as well
as the ability to interconnect in a network of controllers. Extensions of the model
could be used to control locomotion in robotics or other domains.


Fichier(s)

Document(s)

File
Access Erratum_Christian_FERNANDEZ_LORDEN_thesis.pdf
Description: -
Taille: 27.64 kB
Format: Adobe PDF
File
Access Christian_FERNANDEZ_LORDEN_thesis.pdf
Description: Complete Thesis
Taille: 54.55 MB
Format: Adobe PDF

Annexe(s)

File
Access Christian_FERNANDEZ_LORDEN_abstract_thesis.pdf
Description: Abstract of Thesis
Taille: 50.5 kB
Format: Adobe PDF

Auteur

  • Fernandez Lorden, Christian ULiège Université de Liège > Master ingé. civ. électr., à fin.

Promoteur(s)

Membre(s) du jury

  • Franci, Alessio ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Brain-Inspired Computing
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 145
  • Nombre total de téléchargements 123










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.