Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 97 | DOWNLOAD 80

Master Thesis : Characterizing the performance of the SPHERE exoplanet imager at the Very Large Telescope using deep learning

Download
Bissot, Ludo ULiège
Promotor(s) : Absil, Olivier ULiège ; Louppe, Gilles ULiège
Date of defense : 26-Jun-2023/27-Jun-2023 • Permalink : http://hdl.handle.net/2268.2/19340
Details
Title : Master Thesis : Characterizing the performance of the SPHERE exoplanet imager at the Very Large Telescope using deep learning
Author : Bissot, Ludo ULiège
Date of defense  : 26-Jun-2023/27-Jun-2023
Advisor(s) : Absil, Olivier ULiège
Louppe, Gilles ULiège
Committee's member(s) : Fays, Maxime ULiège
Geurts, Pierre ULiège
Language : English
Number of pages : 70
Keywords : [en] Deep learning
[en] Neural networks
[en] Astronomy
[en] Exoplanet
[en] High contrast imaging
[en] Telescope
[en] Uncertainty
Discipline(s) : Engineering, computing & technology > Computer science
Physical, chemical, mathematical & earth Sciences > Space science, astronomy & astrophysics
Funders : CNRS
Research unit : Laboratoire d'Astrophysique de Marseille
Target public : Researchers
Professionals of domain
Student
Complementary URL : https://github.com/lbissot/Master-Thesis
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Taking direct pictures of extrasolar planetary systems is an important, yet challenging goal of modern astronomy, which requires specialized instrumentation. The high-contrast imaging instrument SPHERE, installed since 2014 at the Very Large Telescope, has been collecting a wealth of data over the last eight years. An important aspect for the exploitation of the large SPHERE data base, the scheduling of future observations, and for the preparation of new instruments, is to understand how instrumental performance depends on environmental parameters such as the strength of atmospheric turbulence, the wind velocity, the duration of the observation, the pointing direction, etc. With this project, we propose to use deep learning techniques in order to study how these parameters drive the instrumental performance, in an approach similar to the one used by Xuan et al. 2018. This project will make use of first-hand access the large SPHERE data base through the SPHERE Data Center at IPAG/LAM (Grenoble/Marseille).


File(s)

Document(s)

File
Access Master_Thesis.pdf
Description: -
Size: 9.19 MB
Format: Adobe PDF

Author

  • Bissot, Ludo ULiège Université de Liège > Master ingé. civ. sc. don. à . fin.

Promotor(s)

Committee's member(s)

  • Fays, Maxime ULiège Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Analyse des données relatives aux ondes gravitationnelles
    ORBi View his publications on ORBi
  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Total number of views 97
  • Total number of downloads 80










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.