Master Thesis : Characterizing the performance of the SPHERE exoplanet imager at the Very Large Telescope using deep learning
Bissot, Ludo
Promoteur(s) : Absil, Olivier ; Louppe, Gilles
Date de soutenance : 26-jui-2023/27-jui-2023 • URL permanente : http://hdl.handle.net/2268.2/19340
Détails
Titre : | Master Thesis : Characterizing the performance of the SPHERE exoplanet imager at the Very Large Telescope using deep learning |
Auteur : | Bissot, Ludo |
Date de soutenance : | 26-jui-2023/27-jui-2023 |
Promoteur(s) : | Absil, Olivier
Louppe, Gilles |
Membre(s) du jury : | Fays, Maxime
Geurts, Pierre |
Langue : | Anglais |
Nombre de pages : | 70 |
Mots-clés : | [en] Deep learning [en] Neural networks [en] Astronomy [en] Exoplanet [en] High contrast imaging [en] Telescope [en] Uncertainty |
Discipline(s) : | Ingénierie, informatique & technologie > Sciences informatiques Physique, chimie, mathématiques & sciences de la terre > Aérospatiale, astronomie & astrophysique |
Organisme(s) subsidiant(s) : | CNRS |
Centre(s) de recherche : | Laboratoire d'Astrophysique de Marseille |
Public cible : | Chercheurs Professionnels du domaine Etudiants |
URL complémentaire : | https://github.com/lbissot/Master-Thesis |
Institution(s) : | Université de Liège, Liège, Belgique |
Diplôme : | Master : ingénieur civil en science des données, à finalité spécialisée |
Faculté : | Mémoires de la Faculté des Sciences appliquées |
Résumé
[en] Taking direct pictures of extrasolar planetary systems is an important, yet challenging goal of modern astronomy, which requires specialized instrumentation. The high-contrast imaging instrument SPHERE, installed since 2014 at the Very Large Telescope, has been collecting a wealth of data over the last eight years. An important aspect for the exploitation of the large SPHERE data base, the scheduling of future observations, and for the preparation of new instruments, is to understand how instrumental performance depends on environmental parameters such as the strength of atmospheric turbulence, the wind velocity, the duration of the observation, the pointing direction, etc. With this project, we propose to use deep learning techniques in order to study how these parameters drive the instrumental performance, in an approach similar to the one used by Xuan et al. 2018. This project will make use of first-hand access the large SPHERE data base through the SPHERE Data Center at IPAG/LAM (Grenoble/Marseille).
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.