Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
MASTER THESIS
VIEW 20 | DOWNLOAD 0

Sales forecasting using statistical and machine learning models: the case of HEXPOL

Download
Loewenau, Hendrik ULiège
Promotor(s) : Dumont, Morgane ULiège
Date of defense : 10-Jun-2024/22-Jun-2024 • Permalink : http://hdl.handle.net/2268.2/19634
Details
Title : Sales forecasting using statistical and machine learning models: the case of HEXPOL
Author : Loewenau, Hendrik ULiège
Date of defense  : 10-Jun-2024/22-Jun-2024
Advisor(s) : Dumont, Morgane ULiège
Committee's member(s) : Aerts, Stéphanie ULiège
Panckert, Daniel 
Language : English
Number of pages : 65
Keywords : [en] B2B
[en] Machine learning
[en] Sales forecasting
[en] statistics
Discipline(s) : Business & economic sciences > Quantitative methods in economics & management
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences de gestion (Horaire décalé)
Faculty: Master thesis of the HEC-Ecole de gestion de l'Université de Liège

Abstract

[en] Sales forecasting occupies an important place in manufacturing companies, especially in the B2B sector. It can help organisations optimise their supply chain management, resource allocation and target setting. There has been some development made in the different models and new techniques are derived from existing ones. However, there are still some important challenges and limitations in providing accurate forecasts.
This thesis aims to answer three main questions about which technique and model would be adequate to be used in sales forecasting and whether external data should be included in the forecasting model and what kind of data. Furthermore, it discusses the different statistical and machine-learning model setups applied in search of the optimal outcome. The answers to these questions determine whether of this proof of concept is satisfactory or not. The conclusion determines if a statistical or machine-learning forecasting model could present an alternative or an extension to conventional judgemental forecasting.
The Prophet model which has been developed by the Facebook engineering team turned out to be the best-performing model, whereas the artificial neural network did not perform well based on the chosen evaluation metrics. To better understand the results and put them into context, they are visualised in the BI software “Tableau”.
Improvements in terms of accuracy and precision could still be made by extending the feature selection and taking more or different external datasets into consideration.


File(s)

Document(s)

File
Access Sales forecasting using statistical and machine learning models - the case of HEXPOL.pdf
Description:
Size: 2.51 MB
Format: Adobe PDF
File
Access Sales forecasting using statistical and machine learning models - the case of HEXPOL(1).pdf
Description:
Size: 2.5 MB
Format: Adobe PDF

Author

  • Loewenau, Hendrik ULiège Université de Liège > Master sc. gest. (H.D.)

Promotor(s)

Committee's member(s)

  • Total number of views 20
  • Total number of downloads 0










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.