Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 36 | DOWNLOAD 33

Master thesis and internship[BR]- Master's thesis : Aerostructural optimization of an aircraft wing assisted by dimensionality reduction methods[BR]- Internship

Télécharger
Caudron, Julien ULiège
Promoteur(s) : Hillewaert, Koen ULiège
Date de soutenance : 5-sep-2024/6-sep-2024 • URL permanente : http://hdl.handle.net/2268.2/20862
Détails
Titre : Master thesis and internship[BR]- Master's thesis : Aerostructural optimization of an aircraft wing assisted by dimensionality reduction methods[BR]- Internship
Titre traduit : [fr] Optimisation aérostructurale d'une aile d'avion assistée par des méthodes de réduction de dimensionnalité.
Auteur : Caudron, Julien ULiège
Date de soutenance  : 5-sep-2024/6-sep-2024
Promoteur(s) : Hillewaert, Koen ULiège
Membre(s) du jury : Coelho, Rajan Filomeno 
Langue : Anglais
Nombre de pages : 81
Mots-clés : [en] Dimensionality Reduction
[en] Feature Selection
[en] Multidisciplinary Design Optimization
[en] Free-Form Deformation
[en] Computational Fluid Dynamics
[en] Onera M6 wing
[en] Aerodynamic Shape Optimization
Discipline(s) : Ingénierie, informatique & technologie > Ingénierie aérospatiale
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Grand public
Autre
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil en aérospatiale, à finalité spécialisée en "aerospace engineering"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[en] Advancements in numerical methods have increasingly allowed for the modeling and simulation of complex problems with greater accuracy. However, as these simulations grow in complexity, they become computationally expensive, especially as the growth in computer processing speed appears to have plateaued. In industrial applications, where computational resources are limited, it is essential to find techniques that reduce these costs without compromising accuracy.
This thesis presents a framework that integrates dimensionality reduction methods into an aerostructural optimization process, aiming to improve the performances of the Onera M6 wing, a well-known wing that operates under transonic conditions where shockwaves occur. The wing geometry is modified using the Free-Form Deformation (FFD) method, which allows for smooth deformations based on a parameterization involving 125 design variables. However, this high-dimensional (HD) problem poses challenges for optimization, as the vast design space makes it difficult for the optimizer to locate the global maxima that would enhance the wing performances.
To address this, the study employs dimensionality reduction techniques to simplify the optimization problem. Specifically, the feature selection method, particularly the filter method, is used to rank design variables by their impact on wing performances, setting aside the less influential ones. This approach reduces the dimensionality of the problem, making the optimization process more manageable and cost-effective.
The research is organized into five key sections. The first section focuses on developing a Computational Fluid Dynamics (CFD) setup to accurately model the Onera M6 wing performances, using OpenFOAM to simulate the transonic, compressible, and steady-state fluid-body interaction. The second section details the FFD method and its parameterization. The third section introduces and applies dimensionality reduction methods to the problem at hand. The fourth section covers the optimization process, using two different algorithms to optimize the wing performances. Finally, the last section provides recommendations for further research and potential enhancements to the framework.
This study demonstrates that even with a reduction in dimensionality, the optimization process can yield significant performance improvements while maintaining accuracy, offering valuable insights for industrial applications where computational efficiency is critical.


Fichier(s)

Document(s)

File
Access MAThesis_Julien_Caudron.pdf
Description:
Taille: 7.67 MB
Format: Adobe PDF

Auteur

  • Caudron, Julien ULiège Université de Liège > Master ing. civ. aéro., fin. spéc. aer. eng.

Promoteur(s)

Membre(s) du jury

  • Coelho, Rajan Filomeno Cenaero
  • Nombre total de vues 36
  • Nombre total de téléchargements 33










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.