Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 24 | DOWNLOAD 91

Graph neural networks for models of active matter

Download
Pierre, Jérôme ULiège
Promotor(s) : Louppe, Gilles ULiège
Date of defense : 5-Sep-2024/6-Sep-2024 • Permalink : http://hdl.handle.net/2268.2/21020
Details
Title : Graph neural networks for models of active matter
Translated title : [fr] Réseaux de neurones graphiques interprétables pour les systèmes cellulaires
Author : Pierre, Jérôme ULiège
Date of defense  : 5-Sep-2024/6-Sep-2024
Advisor(s) : Louppe, Gilles ULiège
Committee's member(s) : Huynh-Thu, Vân Anh ULiège
Geurts, Pierre ULiège
Language : English
Number of pages : 71
Keywords : [en] Graph neural network
[en] Interpretability
[en] Symbolic regression
[en] Cellular migration
Discipline(s) : Engineering, computing & technology > Civil engineering
Target public : Researchers
Professionals of domain
Student
General public
Other
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] Cell migration is a critical process that plays a fundamental role in a wide range of
biological phenomena, including embryogenesis, wound healing, and immune responses.
Despite its significance, accurately modeling the complex dynamics of cellular migration
remains challenging.

This thesis investigates the use of graph neural networks (GNNs) to simulate the
dynamics of cellular migration systems. In particular, this work explores the efficacy of
several message-passing GNN architectures including a GaT and classical message-passing
GNNs. The performances of these models are evaluated with a focus on their ability to
replicate ground truth statistics.

Beyond simulation, a key objective of this thesis is to enhance the interpretability
of the models by recovering the underlying mathematical expressions of the interactions
governing cellular interactions. To achieve this, L1 sparsity regularization is applied to
the messages of a single-layer GNN. This results in a dimension reduction that enables
the use of genetic programming for symbolic regression.

Recognizing the challenges posed by symbolic regression in the context of highly
complex analytic equations, this thesis introduces a methodology that decomposes the
messages into a weighted sum of basis functions. Applying symbolic regression on the
weights provides a more tractable means to recover the governing equations.


File(s)

Document(s)

File
Access master_thesis_1 (12).pdf
Description:
Size: 2.91 MB
Format: Adobe PDF
File
Access Erratum_master_thesis_1 (12).pdf
Description: -
Size: 2.97 MB
Format: Adobe PDF

Author

  • Pierre, Jérôme ULiège Université de Liège > Mast. ing. civ. sc. don. fin. spéc.

Promotor(s)

Committee's member(s)

  • Huynh-Thu, Vân Anh ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Total number of views 24
  • Total number of downloads 91










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.