Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 30 | DOWNLOAD 10

Balancing Durability, Performance, and Interpretability in Unbalanced Data as Fraud Detection

Download
Saulas, Adrien ULiège
Promotor(s) : Debruyne, Christophe ULiège
Date of defense : 5-Sep-2024/6-Sep-2024 • Permalink : http://hdl.handle.net/2268.2/21035
Details
Title : Balancing Durability, Performance, and Interpretability in Unbalanced Data as Fraud Detection
Translated title : [fr] Équilibrer la durabilité, la performance et l'interprétabilité dans les données déséquilibrées pour la détection de la fraude
Author : Saulas, Adrien ULiège
Date of defense  : 5-Sep-2024/6-Sep-2024
Advisor(s) : Debruyne, Christophe ULiège
Committee's member(s) : Geurts, Pierre ULiège
Louppe, Gilles ULiège
Language : English
Number of pages : 111
Keywords : [en] MLOps
[en] Machine Learning
[en] Fraud detection
[en] Imbalance
[en] Interpretability
Discipline(s) : Engineering, computing & technology > Computer science
Funders : Intech S.A
Target public : Other
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] The problem of fraud detection is one of the most discussed topics in the field of
machine learning. This study addresses four key areas essential for a fraud detection
platform: prediction accuracy in imbalanced datasets, interpretability of predictions,
deployment and sustainability of the platform, monetary costs associated with model
errors. To tackle these issues, we first conducted extensive research in the field,
then proposed and evaluated our solutions. We introduce methods such as using a
WCGAN (Wasserstein Conditional Generative Adversarial Network) for sampling
or cost-sensitive learning with new models like Light Gradient Boosting, employing
interpretable models like Explainable Boosting, deploying and automating training
processes with Kubernetes and Kubeflow, and utilizing approaches like thresholding
or tuning metrics that account for monetary costs. Each of these solutions shows
promising results and improves upon existing research in the field.


File(s)

Document(s)

File
Access TFE_SAULAS_ADRIEN-1-70.pdf
Description:
Size: 5.62 MB
Format: Adobe PDF
File
Access TFE_resume_SAULAS_Adrien.pdf
Description:
Size: 485.46 kB
Format: Adobe PDF

Annexe(s)

File
Access TFE_SAULAS_ADRIEN-71-111.pdf
Description:
Size: 6.56 MB
Format: Adobe PDF

Author

  • Saulas, Adrien ULiège Université de Liège > Mast. ing. civ. sc. don. fin. spéc.

Promotor(s)

Committee's member(s)

  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Louppe, Gilles ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
    ORBi View his publications on ORBi
  • Total number of views 30
  • Total number of downloads 10










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.