Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 205 | DOWNLOAD 127

Evaluating LLMs on large contexts : a RAG approach on text comprehension

Download
Lu, Benoît ULiège
Promotor(s) : Ittoo, Ashwin ULiège
Date of defense : 5-Sep-2024/6-Sep-2024 • Permalink : http://hdl.handle.net/2268.2/21150
Details
Title : Evaluating LLMs on large contexts : a RAG approach on text comprehension
Author : Lu, Benoît ULiège
Date of defense  : 5-Sep-2024/6-Sep-2024
Advisor(s) : Ittoo, Ashwin ULiège
Committee's member(s) : Poumay, Judicaël ULiège
Geurts, Pierre ULiège
Language : English
Number of pages : 57
Keywords : [en] Large Language Model
[en] Retrieval Augmented Generation
[en] Natural Language Processing
[en] Context Window
[en] Text Comprehension
Discipline(s) : Engineering, computing & technology > Computer science
Target public : Professionals of domain
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en science des données, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] While the latest Large Language Models (LLMs) continue to expand in size and context window capacity, their knowledge base remains constrained by their training corpus. Retrieval Augmented Generation (RAG) offers a solution to this limitation by enhancing the LLM’s responses with relevant information retrieved from external sources. In contrast to the rapidly growing context windows, which now extend to millions of tokens, this study evaluates the effectiveness of augmenting prompts as an alternative approach to using large contexts, this is done by evaluating multiple-choice questions originally made for long context settings. By using parts of the context with RAG, I demonstrate that a well-constructed RAG system
can achieve strong performance with significantly reduced token usage. However, the results also reveal challenges related to prompt sensitivity. Despite these challenges, the potential reduction in inference costs due to lower token usage makes this approach particularly appealing, depending on the application
context.


File(s)

Document(s)

File
Access Master_thesis.pdf
Description:
Size: 2.65 MB
Format: Adobe PDF

Author

  • Lu, Benoît ULiège Université de Liège > Mast. sc. don. fin. spéc.

Promotor(s)

Committee's member(s)

  • Poumay, Judicaël ULiège Université de Liège - ULiège > HEC Liège : UER > UER Opérations : Systèmes d'information de gestion
    ORBi View his publications on ORBi
  • Geurts, Pierre ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique
    ORBi View his publications on ORBi
  • Total number of views 205
  • Total number of downloads 127










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.