Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
MASTER THESIS
VIEW 14 | DOWNLOAD 43

Predicting companies' ESG rating from their 10-K filings using a text mining approach

Download
Roufosse, Benjamin ULiège
Promotor(s) : Ittoo, Ashwin ULiège
Date of defense : 2-Sep-2024/7-Sep-2024 • Permalink : http://hdl.handle.net/2268.2/21642
Details
Title : Predicting companies' ESG rating from their 10-K filings using a text mining approach
Author : Roufosse, Benjamin ULiège
Date of defense  : 2-Sep-2024/7-Sep-2024
Advisor(s) : Ittoo, Ashwin ULiège
Committee's member(s) : Chuor, Porchourng ULiège
Language : English
Number of pages : 19814
Discipline(s) : Business & economic sciences > Quantitative methods in economics & management
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur de gestion, à finalité spécialisée en Supply Chain Management and Business Analytics
Faculty: Master thesis of the HEC-Ecole de gestion de l'Université de Liège

Abstract

[en] The goal of this thesis is to gain information from the 10-K fillings of listed companies using Text Mining techniques in order to predict their ESG rating.


File(s)

Document(s)

File
Access s184504_Benjamin_Roufosse_2024.pdf
Description: -
Size: 1.72 MB
Format: Adobe PDF

Author

  • Roufosse, Benjamin ULiège Université de Liège > Master ing. gest., fin. spéc. supply chain man. & busi. ana.

Promotor(s)

Committee's member(s)

  • Total number of views 14
  • Total number of downloads 43










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.