Validation of a new Meta database usage to understand population's mobility: the February 6th, 2023, Türkiye event case study
Gosselin, Constance
Promoteur(s) :
Hubert, Aurelia
;
Devillet, Guénaël
Date de soutenance : 22-jan-2025 • URL permanente : http://hdl.handle.net/2268.2/22269
Détails
| Titre : | Validation of a new Meta database usage to understand population's mobility: the February 6th, 2023, Türkiye event case study |
| Auteur : | Gosselin, Constance
|
| Date de soutenance : | 22-jan-2025 |
| Promoteur(s) : | Hubert, Aurelia
Devillet, Guénaël
|
| Membre(s) du jury : | Ozer, Pierre
Zickgraf, Caroline
|
| Langue : | Anglais |
| Mots-clés : | [en] Mobility [en] Earthquake |
| Discipline(s) : | Sciences sociales & comportementales, psychologie > Géographie humaine & démographie |
| Institution(s) : | Université de Liège, Liège, Belgique |
| Diplôme : | Master en sciences géographiques, orientation global change, à finalité approfondie |
| Faculté : | Mémoires de la Faculté des Sciences |
Résumé
[en] This study explores the utility of the MDM dataset for
analyzing mobility patterns during natural disasters.
Unlike traditional Big Data sources, MDM provides
unique advantages, such as finer spatial and temporal
scales, enabling the examination of daily mobility
variations.
The dataset was validated against known mobility
patterns, revealing sensitivity to noise and fluctuations
in user activity on the Facebook platform. Significant
differences were observed in mobility responses between
regular and test days, highlighting the role of socio-
demographic factors.
The study also investigates population behavior during
disasters, showing that individuals either stayed within
affected zones or relocated quickly to safer areas.
Although the study has limitations, such as the
exclusion of motivations behind mobility and noise
resilience, it lays the groundwork for using MDM
in future disaster mobility research. Future studies
could explore its application across diverse disaster
types, urban settings, and community mobility patterns.
Fichier(s)
Document(s)
Annexe(s)
Citer ce mémoire
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.

Master Thesis Online


Tous les fichiers (archive ZIP)
Constance_Gosselin_Master_thesis.pdf