Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS
VIEW 44 | DOWNLOAD 23

Master's thesis and internship : Development and Improvement of the power system module within the European Integrated Assessment Model MEDEAS

Diffels, Noé ULiège
Promotor(s) : Quoilin, Sylvain ULiège
Date of defense : 24-Jan-2025 • Permalink : http://hdl.handle.net/2268.2/22453
Details
Title : Master's thesis and internship : Development and Improvement of the power system module within the European Integrated Assessment Model MEDEAS
Author : Diffels, Noé ULiège
Date of defense  : 24-Jan-2025
Advisor(s) : Quoilin, Sylvain ULiège
Committee's member(s) : Wehenkel, Louis ULiège
Solé, Jordi 
Cornélusse, Bertrand ULiège
Language : English
Number of pages : 94
Keywords : [en] Integrated Assessment Model
[en] Machine Learning
[en] MEDEAS
[en] Surrogate Model
[en] Energy Transition
Discipline(s) : Engineering, computing & technology > Energy
Target public : Researchers
Professionals of domain
Student
General public
Other
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master : ingénieur civil en génie de l'énergie à finalité spécialisée en Energy Networks
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] This master's thesis is situated within the broader framework of global climate change and the European Green Deal, which sets the ambitious goal of achieving net-zero greenhouse gas (GHG) emissions in Europe by 2050. In particular, this research focuses on the Integrated Assessment Model (IAM) MEDEAS. This model aims to address the challenges of the energy transition within the European Union (EU) by providing comprehensive assessments of the potential impacts and mitigation strategies associated with various policy measures.

The master's thesis aims to propose a new version of MEDEAS which incorporates a machine learning-based surrogate model (SM) to improve the predictive potential of the IAM, particularly in simulating the European electrical power grid's curtailment and load shedding dynamics. This surrogate model was developed in previous works and is an efficient and flexible tool mirroring Dispa-SET unit commitment and economic dispatch model.

The other key advancements include the integration of additional data from PyPSA-EUR, enabling both the integration of the SM and new investment assessments of renewable energy sources (RES), grid reinforcement, and storage installations. Additionally, new feedback mechanisms inspired by PID control theory simulate instantaneous societal responses aimed at reducing energy curtailment and load shedding.

A comparative analysis against the previous MEDEAS version and a practical case study demonstrate the enhanced model's utility in exploring new energy scenarios and providing meaningful insights for policymakers.


File(s)

Document(s)

File
Access Erratum_main.pdf
Description: -
Size: 4.11 MB
Format: Adobe PDF
File
Access main.pdf
Description:
Size: 4.03 MB
Format: Adobe PDF

Author

  • Diffels, Noé ULiège Université de Liège > Mast. ing. civ. gén. énerg. fin. spéc. Net.

Promotor(s)

Committee's member(s)

  • Wehenkel, Louis ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Méthodes stochastiques
    ORBi View his publications on ORBi
  • Solé, Jordi
  • Cornélusse, Bertrand ULiège Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart-Microgrids
    ORBi View his publications on ORBi
  • Total number of views 44
  • Total number of downloads 23










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.