Feedback

Faculté des Sciences
Faculté des Sciences
MASTER THESIS

A Study of Persistent Homology through Persistence Modules

Download
Martin, Simon ULiège
Promotor(s) : Schneiders, Jean-Pierre ULiège
Date of defense : 26-Jun-2025/27-Jun-2025 • Permalink : http://hdl.handle.net/2268.2/22972
Details
Title : A Study of Persistent Homology through Persistence Modules
Translated title : [fr] Etude de l'homologie persistente au moyen de modules de persistences
Author : Martin, Simon ULiège
Date of defense  : 26-Jun-2025/27-Jun-2025
Advisor(s) : Schneiders, Jean-Pierre ULiège
Committee's member(s) : Leroy, Julien ULiège
Van Messem, Arnout ULiège
Zenaïdi, Naïm ULiège
Lowen, Wendy 
Language : English
Number of pages : 159
Keywords : [en] Persistent Homology
[en] Quiver
[en] Persistence Module
[en] interleaving
[en] topological data analysis
Discipline(s) : Physical, chemical, mathematical & earth Sciences > Mathematics
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences mathématiques, à finalité approfondie
Faculty: Master thesis of the Faculté des Sciences

Abstract

[en] Persistent homology is a tool used in topological data analysis, providing a multiscale approach. Persistence modules provide an algebraic approach to persistent homology. Their decomposition into interval modules is studied using quivers and Gabriel's theorem, as well as generalisations of this result. It is shown that if such a decomposition exists, it is unique up to isomorphism. Several sufficient conditions for such a decomposition to exist are put forward. Afterwards, the interleaving distance is defined. It is used to prove the stability theorem, which justifies the use of persistent homology in topological data analysis.


File(s)

Document(s)

File
Access Mémoire_Version_Finale.pdf
Description:
Size: 3.49 MB
Format: Adobe PDF

Author

  • Martin, Simon ULiège Université de Liège > Master sc. mathématiques, fin. appr.

Promotor(s)

Committee's member(s)

  • Leroy, Julien ULiège Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
    ORBi View his publications on ORBi
  • Van Messem, Arnout ULiège Université de Liège - ULiège > Département de mathématique > Statistique applquée aux sciences
    ORBi View his publications on ORBi
  • Zenaïdi, Naïm ULiège Université de Liège - ULiège > Département de mathématique > Département de mathématique
    ORBi View his publications on ORBi
  • Lowen, Wendy Universiteit Antwerpen > Department of Mathematics








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.