Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
MASTER THESIS

An empirical analysis of tail risk forecasting using realized quantiles

Download
Pirlet, Matthias ULiège
Promotor(s) : Hambuckers, Julien ULiège
Date of defense : 20-Oct-2025/7-Nov-2025 • Permalink : http://hdl.handle.net/2268.2/25034
Details
Title : An empirical analysis of tail risk forecasting using realized quantiles
Translated title : [fr] Analyse empirique de la prévision du risque extrême à l'aide des quantiles réalisés
Author : Pirlet, Matthias ULiège
Date of defense  : 20-Oct-2025/7-Nov-2025
Advisor(s) : Hambuckers, Julien ULiège
Committee's member(s) : Hübner, Philippe ULiège
Language : English
Discipline(s) : Business & economic sciences > Finance
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences de gestion, à finalité spécialisée en management général (Horaire décalé)
Faculty: Master thesis of the HEC-Ecole de gestion de l'Université de Liège

Abstract

[en] Traditional risk measures based on daily returns fail to capture the complex tail dynamics of modern financial markets. This thesis reimplements and validates the realized quantile framework of Halbleib and Dimitriadis (2022) using independent high-frequency data covering 55 U.S. stocks from 2009 to 2019. We compare intrinsic-time sampling schemes which include business time sampling, trade time sampling, and tick time sampling, against conventional constant-time approaches to forecast value at risk and expected shortfall. Our out-of-sample evaluation demonstrates that intrinsic-time sampling significantly outperforms calendar-time methods at extreme tails (99\% VaR), with business time sampling achieving better performance. At intermediate quantiles (95-97.5\% VaR), activity-based schemes dominate, highlighting that different tail regions require different sampling approaches. The results validate the framework's robustness across an independent implementation and different and larger set of stocks. All code is released as open-source to support reproducible research in financial econometrics.


File(s)

Document(s)

File
Access main.pdf
Description:
Size: 1.44 MB
Format: Adobe PDF

Author

  • Pirlet, Matthias ULiège Université de Liège > Form. doct. sc. ingé. & techno. (éléctr., électro.&info.pay)

Promotor(s)

Committee's member(s)

  • Hübner, Philippe ULiège Université de Liège - ULiège > HEC Liège : UER > UER Finance, Comptabilité et Droit : Finance de Marché
    ORBi View his publications on ORBi








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.