Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
MASTER THESIS
VIEW 21 | DOWNLOAD 12

Metaheuristic applications on electric vehicle traveling salesman problem

Download
Yamak, Gökberk ULiège
Promotor(s) : Limbourg, Sabine ULiège
Date of defense : 3-Sep-2019/10-Sep-2019 • Permalink : http://hdl.handle.net/2268.2/8288
Details
Title : Metaheuristic applications on electric vehicle traveling salesman problem
Author : Yamak, Gökberk ULiège
Date of defense  : 3-Sep-2019/10-Sep-2019
Advisor(s) : Limbourg, Sabine ULiège
Committee's member(s) : Bay, Maud ULiège
Smeulders, Bart ULiège
Language : English
Number of pages : 65
Keywords : [en] electric vehicles
[en] traveling salesman problem
[en] energy minimization
[en] battery management
[en] metaheuristic
[en] simulated annealing
[en] steepest ascent
Discipline(s) : Engineering, computing & technology > Multidisciplinary, general & others
Business & economic sciences > Quantitative methods in economics & management
Target public : Researchers
Student
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur de gestion, à finalité spécialisée en Supply Chain Management and Business Analytics
Faculty: Master thesis of the HEC-Ecole de gestion de l'Université de Liège

Abstract

[en] The energy consumption behaviors of the vehicles with electric motors are different compared to traditional internal combustion engines. As a result of regenerative braking systems, electric vehicles also have the possibility to recover energy during the journey. This feature causes a considerable variation in consumption functions, especially on negative slopes. This study focuses on finding the optimal or near-optimal TSP tours for electric vehicles on real-time fed data with the consideration of the road grades, transported loads, the speed of the vehicle, and acceleration-deceleration. These conditions mean that much more complexity in a traveling salesman problem, whose exact methods are already requiring a significant amount of computation time. The ultimate aim was obtaining high-quality solutions using efficient steepest ascent and simulated annealing metaheuristics while reducing the computation times.


File(s)

Document(s)

File
Access ResearchThesis_YamakGokberk_20174465.pdf
Description:
Size: 5.72 MB
Format: Adobe PDF

Annexe(s)

File
Access ResearchThesis_YamakGökberk_20174465_SourceCodes.zip
Description:
Size: 11.15 MB
Format: Unknown

Author

  • Yamak, Gökberk ULiège Université de Liège > Master ingé. gest., à fin.

Promotor(s)

Committee's member(s)

  • Total number of views 21
  • Total number of downloads 12










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.