Feedback

HEC-Ecole de gestion de l'Université de Liège
HEC-Ecole de gestion de l'Université de Liège
MASTER THESIS
VIEW 159 | DOWNLOAD 384

Optimization of drone routing for humanitarian applications.

Download
Lambert, Thomas ULiège
Promotor(s) : Pironet, Thierry ULiège
Date of defense : 5-Sep-2019 • Permalink : http://hdl.handle.net/2268.2/8516
Details
Title : Optimization of drone routing for humanitarian applications.
Translated title : [fr] Optimisation du routage de drones pour des applications humanitaires
Author : Lambert, Thomas ULiège
Date of defense  : 5-Sep-2019
Advisor(s) : Pironet, Thierry ULiège
Committee's member(s) : Deneye, Pierre ULiège
Clavijo Lopez, Christian Javier ULiège
Language : English
Number of pages : 65
Keywords : [en] Optimization
[en] drone
[en] routing
[en] UAV
[en] humanitarian aid
Discipline(s) : Business & economic sciences > Production, distribution & supply chain management
Target public : Researchers
Professionals of domain
General public
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences de gestion, à finalité spécialisée en management général (Horaire décalé)
Faculty: Master thesis of the HEC-Ecole de gestion de l'Université de Liège

Abstract

[en] The present thesis aims to determine if drones could effectively replace \textit{in-situ} inspection for the collect of information in humanitarian crisis situations. This study focuses on the elaboration of optimization models and their application to route efficiently an Unmanned Aerial Vehicle for a given humanitarian mission. The four models developed were all implemented in a mixed-integer linear programming utility so the solutions for UAV routing could be compared with a land vehicle completing the same mission.

This report is divided in four main chapters. The first one introduces the drone technology environment and the humanitarian applications with these drones. A macro-environmental study is performed using a "PESTEL" analysis to better understand the reasons why drones would be useful in the humanitarian context. In the second chapter, a hypothetical mission based on a simplistic version of the transportation network of Haiti will be presented. This scenario will be used in the following chapters as a baseline case study. Chapter three concerns the elaboration of four different optimization models. The first three are a subset of node routing problems (Traveling Salesman Problem and Distance-constrained Vehicle Routing Problems), while the last one is closer to the arc routing category (Capacitated General Routing Problem).

The results obtained for of all these models show that a UAV is always faster than a single land vehicle operating in normal conditions for the test network. However, due to the very large network used as a basic example, the endurance limitations of existing UAVs appear to be a major issue for the real-world applications. Some existing UAV systems could fulfill the mission but they are likely still too expensive for humanitarian organizations. Fortunately, the models elaborated here can be applied to any network, and therefore the advantages of drones with a smaller autonomy can be verified, especially in jungle or mountain environments.


File(s)

Document(s)

File
Access TFE-Optimization_Of_Drone_Routing-T_LAMBERT.pdf
Description:
Size: 3.49 MB
Format: Adobe PDF

Author

  • Lambert, Thomas ULiège Université de Liège > Doct. sc. ingé. & techno. (aérosp. & méc. - paysage)

Promotor(s)

Committee's member(s)

  • Total number of views 159
  • Total number of downloads 384










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.