Feedback

Faculté des Sciences
Faculté des Sciences
Mémoire
VIEW 123 | DOWNLOAD 484

Theoretical investigation of novel binary nitrides M2N3 (M=Ta, Nb, V) as new high-pressure superconductors

Télécharger
Dudzinski, Alexandra ULiège
Promoteur(s) : Verstraete, Matthieu ULiège ; Cano, Andres
Date de soutenance : 29-jui-2020/30-jui-2020 • URL permanente : http://hdl.handle.net/2268.2/9303
Détails
Titre : Theoretical investigation of novel binary nitrides M2N3 (M=Ta, Nb, V) as new high-pressure superconductors
Auteur : Dudzinski, Alexandra ULiège
Date de soutenance  : 29-jui-2020/30-jui-2020
Promoteur(s) : Verstraete, Matthieu ULiège
Cano, Andres 
Membre(s) du jury : Schlagheck, Peter ULiège
Bousquet, Eric ULiège
Dorbolo, Stéphane ULiège
Langue : Anglais
Nombre de pages : 123
Discipline(s) : Physique, chimie, mathématiques & sciences de la terre > Physique
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en sciences physiques, à finalité approfondie
Faculté : Mémoires de la Faculté des Sciences

Résumé

[fr] Superconductivity at room temperature is a hundred year old problem of condensed matter physics. Since the recent discovery of SH3 (200~GPa) and LaH10 (300~GPa), conventional superconductors under pressure play a major role in solid state physics. These BCS-superconductors can be described by theoretical tools and can be more and more synthesized experimentally with strenuous efforts. These classes of materials are especially interesting for they display outstanding parameters influencing the critical temperature. The extreme pressures they are synthesized in lead to completely new materials that would otherwise not spontaneously form in ambient pressures.\cite{main2} The following work is investigating possible superconducting properties of novel metal-nitrides that can be obtained via high-temperature and high-pressure synthesis techniques. They can be recovered at ambient temperatures with interesting parameters, making them versatile for industrial use.
A focus is put on binary transition metal nitrides with the nitrogen to metal ratio 3:2, while a close look is taken on Group 5 metals. This material class does not only display superconductivity but also interesting mechanical properties. For all compounds, structural, electronic and vibrational properties are predicted and they are found to be in good agreement with literature. Firstly, the previously synthesized eta-Ta2N3 compound is investigated and its experimentally found critical temperature of ~3K is theoretically confirmed in this work. Similar superconductive parameter are found for the same material at 26.065 GPa. We compare the calculation of superconductive parameters from the software Abinit, which is used to obtain all results, with previous results from Quantum Espresso for the tetragonal Ta2N3 and it is found that the superconductive parameters, especially the logarithmic frequency, are generally underestimated with Abinit. It is proposed to calculate the critical temperature with the help of the more accurately calculated Debye-temperature. The tetragonal Ta2N3 is predicted to be a very low critical temperature superconductor, while it still might display no superconductivity at all. Furthermore, the orthorhombic Nb2N3 is investigated further, its electronic and vibrational parameters are found and it is predicted to have a very high electron phonon coupling that could potentially lead to a superconductivity at 30K. The last Group 5 metal nitride in question is the V2N3. Previously, the instability of the orthorhombic V2N3 was found, which is confirmed by us through calculating the phonon dispersion and finding various imaginary frequencies. Its stable trigonal form is investigated, its electronic structure and vibrational properties are discussed in the following. Superconductivity is either not present in this compound or it can be found at very low critical temperatures.


Fichier(s)

Document(s)

File
Access Masterthesis_Dudzinski_Alexandra.pdf
Description: -
Taille: 19.13 MB
Format: Adobe PDF

Auteur

  • Dudzinski, Alexandra ULiège Université de Liège > Mast. sciences. phys. à fin. (FAME+)

Promoteur(s)

Membre(s) du jury

  • Nombre total de vues 123
  • Nombre total de téléchargements 484










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.