Feedback

Faculté des Sciences
Faculté des Sciences
MASTER THESIS
VIEW 107 | DOWNLOAD 54

Deep Learning in ArcGIS Pro using Lidar data for automatic detection of archaeological structures

Download
Baudhuin, Alice ULiège
Promotor(s) : Kokalj, Ziga ; Jonard, François ULiège
Date of defense : 29-Jun-2023/30-Jun-2023 • Permalink : http://hdl.handle.net/2268.2/17638
Details
Title : Deep Learning in ArcGIS Pro using Lidar data for automatic detection of archaeological structures
Translated title : [fr] Deep Learning dans ArcGIS Pro sur base de données Lidar pour la détection automatique de structures archéologiques
Author : Baudhuin, Alice ULiège
Date of defense  : 29-Jun-2023/30-Jun-2023
Advisor(s) : Kokalj, Ziga 
Jonard, François ULiège
Committee's member(s) : Nascetti, Andrea ULiège
Hallot, Pierre ULiège
Language : English
Number of pages : 97
Keywords : [en] Deep learning, lidar, archaeology
Discipline(s) : Physical, chemical, mathematical & earth Sciences > Space science, astronomy & astrophysics
Research unit : Institute of Anthropological and Spatial Studies
Target public : Researchers
Professionals of domain
Student
General public
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en sciences spatiales, à finalité spécialisée
Faculty: Master thesis of the Faculté des Sciences

Abstract

[en] This Master Thesis studies the application of deep learning to lidar data for archaeological purposes. Specific lidar-derived visualisations, which are especially relevant in the case of archaeology, are used. The goal is to investigate several deep learning models using the ArcGIS Pro software, and determine their performance in finding new archaeological features when applied to these visualisations.


File(s)

Document(s)

File
Access master_thesis.pdf
Description:
Size: 148.68 MB
Format: Adobe PDF

Author

  • Baudhuin, Alice ULiège Université de Liège > Master sc. spatiales, à fin.

Promotor(s)

Committee's member(s)

  • Total number of views 107
  • Total number of downloads 54










All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.