Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
Mémoire
VIEW 108 | DOWNLOAD 43

Master thesis and internship[BR]- Master's thesis : Computational method for whirl-flutter analysis of urban air mobility vehicles[BR]- Internship

Télécharger
Jacquet, Charles ULiège
Promoteur(s) : Salles, Loïc ULiège
Date de soutenance : 5-sep-2024/6-sep-2024 • URL permanente : http://hdl.handle.net/2268.2/20851
Détails
Titre : Master thesis and internship[BR]- Master's thesis : Computational method for whirl-flutter analysis of urban air mobility vehicles[BR]- Internship
Titre traduit : [fr] Méthode de calcul pour l'analyse du flottement gyroscopique des véhicules aériens urbains
Auteur : Jacquet, Charles ULiège
Date de soutenance  : 5-sep-2024/6-sep-2024
Promoteur(s) : Salles, Loïc ULiège
Membre(s) du jury : Kerschen, Gaëtan ULiège
Andrianne, Thomas ULiège
Langue : Anglais
Nombre de pages : 103
Mots-clés : [fr] Floquet Theory, whirl-flutter, validation model, rotating structure, rotating/stationary time coupling, finite element modeling, floating frame of reference, Newmark, Runge-Kutta
Discipline(s) : Ingénierie, informatique & technologie > Ingénierie aérospatiale
Centre(s) de recherche : Aerospace & Mechanics
Public cible : Chercheurs
Professionnels du domaine
Etudiants
Institution(s) : Université de Liège, Liège, Belgique
Diplôme : Master en ingénieur civil en aérospatiale, à finalité spécialisée en "aerospace engineering"
Faculté : Mémoires de la Faculté des Sciences appliquées

Résumé

[fr] This thesis examines the whirl-flutter phenomenon in urban air mobility vehicles, crucial for the safety and efficiency of next-generation aircraft. The rise of Electric Vertical Take-Off and Landing (E-VTOL) vehicles, driven by the demand for fast urban transport, emphasizes the need to understand and mitigate aeroelastic instabilities like whirl-flutter, particularly in designs with distributed electric propulsion systems. Historically, whirl-flutter has caused catastrophic failures, highlighting the need for comprehensive analysis in modern aircraft designs.

The objective of this work is to develop a comprehensive computational model using the Finite Element Method to fully capture the dynamics between rotating, expressed in a floating frame of reference, and stationary parts of a structure, enabling a more accurate study of the whirl-flutter phenomenon. This analysis is conducted using the Floquet theory to study the stability of the system, particularly in a fixed-rotating frame of reference. The model includes an innovative time dependent mechanical coupling strategy for the mass, gyroscopic, and centrifugal stiffness structural matrices therefore fully preserving the dynamics of the structure, a first in the literature.

The research methodology involves the validation of various finite element matrices and components derived from Euler-Bernoulli 3D beam elements, followed by the implementation of time-dependent coupling between rotating and stationary components. This coupling is validated through case studies, including a ground resonance model and a rotating shaft with blades. Finally, the developed model is applied to a wing-propeller structure, illustrating its capability to work on complex geometry structures.

The results show that the partial coupling, specifically the coupling between translational degrees of freedom of rotating structures and those of stationary structure at the hub, is successfully validated. However, it is demonstrated that the Newmark integration scheme does not provide consistent results, highlighting the need for alternative approaches such as Runge-Kutta scheme for accurate time integration. Although the full coupling is not entirely validated, the initial results suggest that the implementation is correctly performed and shows promise for future validation efforts. This partial success demonstrates the potential of the developed model as a tool for accurately capturing critical dynamics in whirl-flutter analysis, contributing to the design and certification of future urban air mobility vehicles.


Fichier(s)

Document(s)

File
Access JACQUET_Thesis.pdf
Description:
Taille: 9.76 MB
Format: Adobe PDF

Annexe(s)

File
Access JACQUET_Abstract.pdf
Description:
Taille: 84.76 kB
Format: Adobe PDF

Auteur

  • Jacquet, Charles ULiège Université de Liège > Master ing. civ. aéro., fin. spéc. aer. eng.

Promoteur(s)

Membre(s) du jury

  • Kerschen, Gaëtan ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
    ORBi Voir ses publications sur ORBi
  • Andrianne, Thomas ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
    ORBi Voir ses publications sur ORBi
  • Nombre total de vues 108
  • Nombre total de téléchargements 43










Tous les documents disponibles sur MatheO sont protégés par le droit d'auteur et soumis aux règles habituelles de bon usage.
L'Université de Liège ne garantit pas la qualité scientifique de ces travaux d'étudiants ni l'exactitude de l'ensemble des informations qu'ils contiennent.