Feedback

Faculté des Sciences appliquées
Faculté des Sciences appliquées
MASTER THESIS

Master thesis and internship[BR]- [BR]-

Download
Renkin, Victor ULiège
Promotor(s) : Salles, Loïc ULiège
Date of defense : 23-Jan-2026 • Permalink : http://hdl.handle.net/2268.2/25188
Details
Title : Master thesis and internship[BR]- [BR]-
Author : Renkin, Victor ULiège
Date of defense  : 23-Jan-2026
Advisor(s) : Salles, Loïc ULiège
Committee's member(s) : Boman, Romain ULiège
Raze, Ghislain ULiège
Halbach, Alexandre 
Yuan, Jie 
Language : English
Number of pages : 106
Keywords : [en] Harmonic Balance Method
[en] Nonlinear Frequency Responses
[en] Nonlinear Normal Modes
[en] Geometric Nonlinearities
[en] Continuation
[en] Campbell Diagram
[en] High-Performance Computing
[en] Quanscient Allsolve
Discipline(s) : Engineering, computing & technology > Aerospace & aeronautics engineering
Research unit : Laboratory Vibration of Turbomachines
Target public : Researchers
Professionals of domain
Student
General public
Institution(s) : Université de Liège, Liège, Belgique
Degree: Master en ingénieur civil en aérospatiale, à finalité spécialisée en "aerospace engineering"
Faculty: Master thesis of the Faculté des Sciences appliquées

Abstract

[en] The accurate prediction of nonlinear vibration phenomena remains a key challenge in modern turbomachinery and aerospace design, as lightweight and highly integrated structures are increasingly affected by geometric nonlinearities, modal interactions, and amplitude-dependent dynamics that cannot be captured by classical linear vibration models. Robust frequency-domain formulations combined with scalable numerical solvers are therefore required to address industrial-scale finite element analyses.

This work presents a parallel Harmonic Balance framework for the analysis of geometrically nonlinear elastic systems. Large deformations are modelled using a finite element formulation based on the Green–Lagrange strain tensor. The application of the Harmonic Balance Method leads to a nonlinear algebraic system solved using a Newton–Raphson algorithm embedded within a continuation strategy, allowing nonlinear frequency responses and nonlinear normal modes to be investigated in a unified manner. For the computation of nonlinear normal modes, an additional phase condition and a relaxation parameter are introduced to ensure uniqueness and convergence.

In parallel, a rotating-frame formulation is developed for the analysis of rotating structures, enabling the computation of nonlinear Campbell diagrams.

The framework is implemented in the in-house pyHarm solver and subsequently deployed on Quanscient’s cloud-native multiphysics platform Allsolve, which relies on domain decomposition and distributed-memory linear solvers (MUMPS, PETSc) for large-scale parallel finite element simulations. Comprehensive numerical studies are carried out on academic benchmark structures as well as on an industrial fan-blade configuration. Nonlinear frequency responses, nonlinear normal modes, and Campbell diagrams are analysed, and an excellent agreement between the different descriptions is observed, confirming the physical consistency of the proposed methodology. Scalability analyses demonstrate efficient strong scaling behaviour up to 64 MPI processes, with computational performance primarily governed by matrix assembly and factorisation. The Alternating Frequency–Time formulation is compared with a direct frequency-domain evaluation of the nonlinear terms, and the impact of quadruple-precision arithmetic is investigated, highlighting a trade-off between numerical robustness and computational cost.

Overall, the proposed framework enables predictive and scalable nonlinear vibration analysis in the frequency domain, while also providing a consistent nonlinear rotating-frame formulation for the investigation of rotating aerospace structures.


File(s)

Document(s)

File
Access Master_Thesis_Victor_Renkin.pdf
Description: -
Size: 15.62 MB
Format: Adobe PDF
File
Access null
Description: -
Size: 15.88 MB
Format: Unknown

Annexe(s)

File
Access Abstract_Victor_Renkin.pdf
Description: -
Size: 72.52 kB
Format: Adobe PDF
File
Access null
Description: -
Size: 96.11 kB
Format: Unknown

Author

  • Renkin, Victor ULiège Université de Liège > Master ing. civ. aéro., fin. spéc. aer. eng.

Promotor(s)

Committee's member(s)

  • Boman, Romain ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
    ORBi View his publications on ORBi
  • Raze, Ghislain ULiège Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
    ORBi View his publications on ORBi
  • Halbach, Alexandre
  • Yuan, Jie








All documents available on MatheO are protected by copyright and subject to the usual rules for fair use.
The University of Liège does not guarantee the scientific quality of these students' works or the accuracy of all the information they contain.